18,978 research outputs found

    Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity

    Get PDF
    The bifurcation of asymmetric superconducting solutions from the normal solution is considered for the one-dimensional Ginzburg--Landau equations by the methods of formal asymptotics. The behavior of the bifurcating branch depends on the parameters d, the size of the superconducting slab, and κ\kappa, the Ginzburg--Landau parameter. The secondary bifurcation in which the asymmetric solution branches reconnect with the symmetric solution branch is studied for values of (κ,d)(\kappa,d) for which it is close to the primary bifurcation from the normal state. These values of (κ,d)(\kappa,d) form a curve in the κd\kappa d-plane, which is determined. At one point on this curve, called the quintuple point, the primary bifurcations switch from being subcritical to supercritical, requiring a separate analysis. The results answer some of the conjectures of [A. Aftalion and W. C. Troy, Phys. D, 132 (1999), pp. 214--232]

    Self-consistent nonlinear kinetic simulations of the anomalous Doppler instability of suprathermal electrons in plasmas

    Get PDF
    Suprathermal tails in the distributions of electron velocities parallel to the magnetic field are found in many areas of plasma physics, from magnetic confinement fusion to solar system plasmas. Parallel electron kinetic energy can be transferred into plasma waves and perpendicular gyration energy of particles through the anomalous Doppler instability (ADI), provided that energetic electrons with parallel velocities v ≥ (ω + Ωce )/k are present; here Ωce denotes electron cyclotron frequency, ω the wave angular frequency and k the component of wavenumber parallel to the magnetic field. This phenomenon is widely observed in tokamak plasmas. Here we present the first fully self-consistent relativistic particle-in-cell simulations of the ADI, spanning the linear and nonlinear regimes of the ADI. We test the robustness of the analytical theory in the linear regime and follow the ADI through to the steady state. By directly evaluating the parallel and perpendicular dynamical contributions to j · E in the simulations, we follow the energy transfer between the excited waves and the bulk and tail electron populations for the first time. We find that the ratio Ωce /(ωpe + Ωce ) of energy transfer between parallel and perpendicular, obtained from linear analysis, does not apply when damping is fully included, when we find it to be ωpe /(ωpe + Ωce ); here ωpe denotes the electron plasma frequency. We also find that the ADI can arise beyond the previously expected range of plasma parameters, in particular when Ωce > ωpe . The simulations also exhibit a spectral feature which may correspond to observations of suprathermal narrowband emission at ωpe detected from low density tokamak plasmas

    The Maximal Denumerant of a Numerical Semigroup

    Full text link
    Given a numerical semigroup S = and n in S, we consider the factorization n = c_0 a_0 + c_1 a_1 + ... + c_t a_t where c_i >= 0. Such a factorization is maximal if c_0 + c_1 + ... + c_t is a maximum over all such factorizations of n. We provide an algorithm for computing the maximum number of maximal factorizations possible for an element in S, which is called the maximal denumerant of S. We also consider various cases that have connections to the Cohen-Macualay and Gorenstein properties of associated graded rings for which this algorithm simplifies.Comment: 13 Page

    Improving the Functional Control of Aged Ferroelectrics using Insights from Atomistic Modelling

    Get PDF
    We provide a fundamental insight into the microscopic mechanisms of the ageing processes. Using large scale molecular dynamics simulations of the prototypical ferroelectric material PbTiO3, we demonstrate that the experimentally observed ageing phenomena can be reproduced from intrinsic interactions of defect-dipoles related to dopant-vacancy associates, even in the absence of extrinsic effects. We show that variation of the dopant concentration modifies the material's hysteretic response. We identify a universal method to reduce loss and tune the electromechanical properties of inexpensive ceramics for efficient technologies.Comment: 6 pages, 3 figure

    Mass transport of an impurity in a strongly sheared granular gas

    Full text link
    Transport coefficients associated with the mass flux of an impurity immersed in a granular gas under simple shear flow are determined from the inelastic Boltzmann equation. A normal solution is obtained via a Chapman-Enskog-like expansion around a local shear flow distribution that retains all the hydrodynamic orders in the shear rate. Due to the anisotropy induced by the shear flow, tensorial quantities are required to describe the diffusion process instead of the conventional scalar coefficients. The mass flux is determined to first order in the deviations of the hydrodynamic fields from their values in the reference state. The corresponding transport coefficients are given in terms of the solutions of a set of coupled linear integral equations, which are approximately solved by considering the leading terms in a Sonine polynomial expansion. The results show that the deviation of these generalized coefficients from their elastic forms is in general quite important, even for moderate dissipation.Comment: 6 figure

    Photoluminescence signature of skyrmions at \nu = 1

    Full text link
    The photoluminescence spectrum of quantized Hall states near filling factor \nu = 1 is investigated theoretically. For \nu >= 1 the spectrum consists of a right-circularly polarized (RCP) line and a left-circularly polarized (LCP) line, whose mean energy: (1) does not depend on the electron g factor for spin-1/2 quasielectrons, (2) does depend on g for charged spin-texture excitations (skyrmions). For \nu < 1 the spectrum consists of a LCP line shifted down in energy from the LCP line at \nu >= 1. The g-factor dependence of the red shift of the LCP line determines the nature of the negatively charged excitations.Comment: 11 pages, 2 PostScript figures. Replaced with version to appear in Physical Review B Rapid Communications. Minor changes, reference adde

    Computer simulations of an impurity in a granular gas under planar Couette flow

    Full text link
    We present in this work results from numerical solutions, obtained by means of the direct simulation Monte Carlo (DSMC) method, of the Boltzmann and Boltzmann--Lorentz equations for an impurity immersed in a granular gas under planar Couette flow. The DSMC results are compared with the exact solution of a recent kinetic model for the same problem. The results confirm that, in steady states and over a wide range of parameter values, the state of the impurity is enslaved to that of the host gas: it follows the same flow velocity profile, its concentration (relative to that of the granular gas) is constant in the bulk region, and the impurity/gas temperature ratio is also constant. We determine also the rheological properties and nonlinear hydrodynamic transport coefficients for the impurity, finding a good semi-quantitative agreement between the DSMC results and the theoretical predictions.Comment: 23 pages, 11 figures; v2: minor change

    Statistical model for intermittent plasma edge turbulence

    Full text link
    The Probability Distribution Function of plasma density fluctuations at the edge of fusion devices is known to be skewed and strongly non-Gaussian. The causes of this peculiar behaviour are, up to now, largely unexplored. On the other hand, understanding the origin and the properties of edge turbulence is a key issue in magnetic fusion research. In this work we show that a stochastic fragmentation model, already successfully applied to fluid turbulence, is able to predict an asymmetric distribution that closely matches experimental data. The asymmetry is found to be a direct consequence of intermittency. A discussion of our results in terms of recently suggested BHP universal curve [S.T. Bramwell, P.C.W. Holdsworth, J.-F. Pinton, Nature (London) 396, 552 (1998)], that should hold for strongly correlated and critical systems, is also proposedComment: 13 pages. Physica Review E, accepte

    Transport coefficients for an inelastic gas around uniform shear flow: Linear stability analysis

    Full text link
    The inelastic Boltzmann equation for a granular gas is applied to spatially inhomogeneous states close to the uniform shear flow. A normal solution is obtained via a Chapman-Enskog-like expansion around a local shear flow distribution. The heat and momentum fluxes are determined to first order in the deviations of the hydrodynamic field gradients from their values in the reference state. The corresponding transport coefficients are determined from a set of coupled linear integral equations which are approximately solved by using a kinetic model of the Boltzmann equation. The main new ingredient in this expansion is that the reference state f(0)f^{(0)} (zeroth-order approximation) retains all the hydrodynamic orders in the shear rate. In addition, since the collisional cooling cannot be compensated locally for viscous heating, the distribution f(0)f^{(0)} depends on time through its dependence on temperature. This means that in general, for a given degree of inelasticity, the complete nonlinear dependence of the transport coefficients on the shear rate requires the analysis of the {\em unsteady} hydrodynamic behavior. To simplify the analysis, the steady state conditions have been considered here in order to perform a linear stability analysis of the hydrodynamic equations with respect to the uniform shear flow state. Conditions for instabilities at long wavelengths are identified and discussed.Comment: 7 figures; previous stability analysis modifie

    Thermal suppression of surface barrier in ultrasmall superconducting structures

    Full text link
    In the recent experiment by Cren \textit{et al.} [Phys. Rev. Lett. \textbf{102}, 127005 (2009)], no hysteresis for vortex penetration and expulsion from the nano-island of Pb was observed. In the present paper, we argue that this effect can be associated with the thermoactivated surmounting of the surface barrier by a vortex. The typical entrance (exit) time is found analytically from the Fokker-Planck equation, written in the form suitable for the extreme vortex confinement. We show that this time is several orders of magnitude smaller than 1 second under the conditions of the experiment considered. Our results thus demonstrate a possibility for the thermal suppression of the surface barrier in nanosized low-TcT_{c} superconductors. We also briefly discuss other recent experiments on vortices in related structures.Comment: 12 pages, 2 figure
    • …
    corecore