25,608 research outputs found

    Motion and homogenization of vortices in anisotropic Type II superconductors

    Get PDF
    The motion of vortices in an anisotropic superconductor is considered. For a system of well-separated vortices, each vortex is found to obey a law of motion analogous to the local induction approximation, in which velocity of the vortex depends upon the local curvature and orientation. A system of closely packed vortices is then considered, and a mean field model is formulated in which the individual vortex lines are replaced by a vortex density

    Development of a Thermal Management System for Electrified Aircraft

    Get PDF
    This paper describes the development and optimization of a conceptual thermal management system for electrified aircraft. Here, a vertical takeoff and landing (VTOL) vehicle is analyzed with the following electrically sourced heat loads considered: motors, generators, rectifiers, and inverters. The vehicle will employ liquid-cooling techniques in order to acquire, transport, and reject waste heat from the vehicle. The purpose of this paper is to threefold: 1) Present a potential modeling framework for system level thermal management system simulation, 2) Analyze typical system characteristics, and 3) Perform optimization on a system developed for a specific vehicle to minimize weight gain, power utilization, and drag. Additionally, the paper will study the design process, specifically investigating the differences between steady state and transient sizing, comparing simulation techniques with a lower fidelity option and quantifying expected error

    Motion of vortices in type II superconductors

    Get PDF
    The methods of formal asymptotics are used to examine the behaviour of a system of curvilinear vortices in a type II superconductor as the thickness of the vortex cores tends to zero. The vortices then appear as singularities in the field equation and are analagous to line vortices in inviscid hydrodynamics. A local analysis near each vortex core gives an equation of motion governing the evolution of these singularities

    Localization of spin mixing dynamics in a spin-1 Bose-Einstein condensate

    Full text link
    We propose to localize spin mixing dynamics in a spin-1 Bose-Einstein condensate by a temporal modulation of spin exchange interaction, which is tunable with optical Feshbach resonance. Adopting techniques from coherent control, we demonstrate the localization/freezing of spin mixing dynamics, and the suppression of the intrinsic dynamic instability and spontaneous spin domain formation in a ferromagnetically interacting condensate of 87^{87}Rb atoms. This work points to a promising scheme for investigating the weak magnetic spin dipole interaction, which is usually masked by the more dominant spin exchange interaction.Comment: 4 pages, 5 eps figures, published in Phys. Rev. A

    The motion of superconducting vortices in thin films of varying thickness

    Get PDF
    The interaction of superconducting vortices with superconductor/vacuum interfaces is considered. A vortex is first shown to intersect such an interface normally. Various thin-film models are then formulated, corresponding to different parameter regimes. A local analysis of a vortex is performed, and a law of motion for each vortex deduced. This law of motion implies that the vortex will move to the locally thinnest part of the film, and is consistent with the vortex moving under the curvature induced by being forced to intersect the boundaries of the film normall

    Observations of cosmic ray induced phosphenes

    Get PDF
    Phosphene observations by astronauts on flights near and far from earth atmosphere are discussed. It was concluded that phosphenes could be observed by the naked eye. Further investigation is proposed to determine realistic human tolerance levels for extended missions and to evaluate the need to provide special spacecraft shielding

    Controlled splitting of an atomic wave packet

    Get PDF
    We propose a simple scheme capable of adiabatically splitting an atomic wave packet using two independent translating traps. Implemented with optical dipole traps, our scheme allows a high degree of flexibility for atom interferometry arrangements and highlights its potential as an efficient and high fidelity atom optical beam splitter.Comment: 4 pages, 4 figures. Accepted by Phys. Rev. Let

    Non-linear screening of spherical and cylindrical colloids: the case of 1:2 and 2:1 electrolytes

    Full text link
    From a multiple scale analysis, we find an analytic solution of spherical and cylindrical Poisson-Boltzmann theory for both a 1:2 (monovalent co-ions, divalent counter-ions) and a 2:1 (reversed situation) electrolyte. Our approach consists in an expansion in powers of rescaled curvature 1/(κa)1/(\kappa a), where aa is the colloidal radius and 1/κ1/\kappa the Debye length of the electrolytic solution. A systematic comparison with the full numerical solution of the problem shows that for cylinders and spheres, our results are accurate as soon as κa>1\kappa a>1. We also report an unusual overshooting effect where the colloidal effective charge is larger than the bare one.Comment: 9 pages, 11 figure

    Some gamma-ray shielding measurements made at altitudes greater than 115000 feet using large Ge(Li) detectors

    Get PDF
    A series of balloon-flight experiments at altitudes greater than 115,000 feet were conducted to gain information relative to the use of composite shields (passive and/or active) for shielding large-volume, lithium-drifted, germanium (Ge(Li)) detectors used in gamma-ray spectrometers. Data showing the pulse-height spectra of the environmental gamma radiation as measured at 5.3 and 3.8 gms sq cm residual atmosphere with an unshielded diode detector are also presented
    • …
    corecore