21,020 research outputs found

    Apparatus for recovering matter adhered to a host surface

    Get PDF
    The development of an apparatus for removing and recovering matter adhered to a host surface is described. The device consists of a pickup head with an ultrasonic transducer adapted to deliver ultrasonic pressure waves against the material. The ultrasonic waves agitate the material and cause its separation from the surface. A vacuum system recovers the material and delivers it to suitable storage containers

    Nearest neighbor - A new non-parametric test used for classifying spectral data

    Get PDF
    Nonparametric statistical interference program for spectral data classificatio

    Development of a Thermal Management System for Electrified Aircraft

    Get PDF
    This paper describes the development and optimization of a conceptual thermal management system for electrified aircraft. Here, a vertical takeoff and landing (VTOL) vehicle is analyzed with the following electrically sourced heat loads considered: motors, generators, rectifiers, and inverters. The vehicle will employ liquid-cooling techniques in order to acquire, transport, and reject waste heat from the vehicle. The purpose of this paper is to threefold: 1) Present a potential modeling framework for system level thermal management system simulation, 2) Analyze typical system characteristics, and 3) Perform optimization on a system developed for a specific vehicle to minimize weight gain, power utilization, and drag. Additionally, the paper will study the design process, specifically investigating the differences between steady state and transient sizing, comparing simulation techniques with a lower fidelity option and quantifying expected error

    Condor services for the Global Grid:interoperability between Condor and OGSA

    Get PDF
    In order for existing grid middleware to remain viable it is important to investigate their potentialfor integration with emerging grid standards and architectural schemes. The Open Grid ServicesArchitecture (OGSA), developed by the Globus Alliance and based on standard XML-based webservices technology, was the first attempt to identify the architectural components required tomigrate towards standardized global grid service delivery. This paper presents an investigation intothe integration of Condor, a widely adopted and sophisticated high-throughput computing softwarepackage, and OGSA; with the aim of bringing Condor in line with advances in Grid computing andprovide the Grid community with a mature suite of high-throughput computing job and resourcemanagement services. This report identifies mappings between elements of the OGSA and Condorinfrastructures, potential areas of conflict, and defines a set of complementary architectural optionsby which individual Condor services can be exposed as OGSA Grid services, in order to achieve aseamless integration of Condor resources in a standardized grid environment

    Some gamma-ray shielding measurements made at altitudes greater than 115000 feet using large Ge(Li) detectors

    Get PDF
    A series of balloon-flight experiments at altitudes greater than 115,000 feet were conducted to gain information relative to the use of composite shields (passive and/or active) for shielding large-volume, lithium-drifted, germanium (Ge(Li)) detectors used in gamma-ray spectrometers. Data showing the pulse-height spectra of the environmental gamma radiation as measured at 5.3 and 3.8 gms sq cm residual atmosphere with an unshielded diode detector are also presented

    Examples of mathematical modeling tales from the crypt

    Get PDF
    Mathematical modeling is being increasingly recognized within the biomedical sciences as an important tool that can aid the understanding of biological systems. The heavily regulated cell renewal cycle in the colonic crypt provides a good example of how modeling can be used to find out key features of the system kinetics, and help to explain both the breakdown of homeostasis and the initiation of tumorigenesis. We use the cell population model by Johnston et al. (2007) Proc. Natl. Acad. Sci. USA 104, 4008-4013, to illustrate the power of mathematical modeling by considering two key questions about the cell population dynamics in the colonic crypt. We ask: how can a model describe both homeostasis and unregulated growth in tumorigenesis; and to which parameters in the system is the model most sensitive? In order to address these questions, we discuss what type of modeling approach is most appropriate in the crypt. We use the model to argue why tumorigenesis is observed to occur in stages with long lag phases between periods of rapid growth, and we identify the key parameters

    On the proportion of cancer stem cells in a tumour

    Get PDF
    It is now generally accepted that cancers contain a sub-population, the cancer stem cells (CSCs), which initiate and drive a tumour’s growth. At least until recently it has been widely assumed that only a small proportion of the cells in a tumour are CSCs. Here we use a mathematical model, supported by experimental evidence, to show that such an assumption is unwarranted. We show that CSCs may comprise any possible proportion of the tumour, and that the higher the proportion the more aggressive the tumour is likely to be
    • …
    corecore