18 research outputs found

    Genetic and ecological outcomes of Inga vera subsp. affinis (leguminosae) tree plantations in a fragmented tropical landscape

    Get PDF
    Planting of native trees for habitat restoration is a widespread practice, but the consequences for the retention and transmission of genetic diversity in planted and natural populations are unclear. Using Inga vera subsp. affinis as a model species, we genotyped five natural and five planted populations in the Atlantic forest of northeastern Brazil at polymorphic microsatellite loci. We studied the breeding system and population structure to test how much genetic diversity is retained in planted relative to natural populations. We then genotyped seedlings from these populations to test whether genetic diversity in planted populations is restored by outcrossing to natural populations of I. vera. The breeding system of natural I. vera populations was confirmed to be highly outcrossing (t = 0.92; FIS = -0.061, P = 0.04), with populations showing weak population substructure (FST = 0.028). Genetic diversity in planted populations was 50% less than that of natural populations (planted: AR = 14.9, HO = 0.865 and natural: AR = 30.8, HO = 0.655). However, seedlings from planted populations showed a 30% higher allelic richness relative to their parents (seedlings AR = 10.5, parents AR = 7.6). Understanding the processes and interactions that shape this system are necessary to provide ecologically sensible goals and successfully restore hyper-fragmented habitats. Future restoration plans for I. vera must consider the genetic diversity of planted populations and the potential for gene flow between natural populations in the landscape, in order to preserve ecological interactions (i.e. pollination), and promote opportunities for outcrossing

    Initiation of rrn transcription in chloroplasts of Euglena gracilis bacillaris

    Full text link
    The site of initiation of chloroplast rRNA synthesis was determined by Sl-mapping and by sequencing primary rRNA transcripts specifically labeled at their 5′-end. Transcription initiates at a single site 53 nucleotides upstream of the 5'-end of the mature 16S rRNA under all growth conditions examined. The initiation site is within a DNA sequence that is highly homologous to and probably derived from a tRNA gene-region located elsewhere in the chloroplast genome. A nearly identical sequence (102 of 103 nucleotides) is present near the replication origin. The near identity of the two sequences suggests a common mode for control of transcription of the rRNA genes and initiation of chloroplast DNA replication. The related sequence in the tRNA gene-region does not appear to serve as a transcript initiation site.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46967/1/294_2004_Article_BF00521275.pd

    The archaeology of communications' digital age

    No full text
    This paper reviews the history of the digital age of communications that began with the invention of the stored program computer in 1948 and is today realised by the World Wide Web, super fast broadband and the smart phone. Taking a predominantly UK focus, the paper examines the key technological advances that were made, where they occurred and what archaeological evidence remains of their existence. The paper begins by examining how digital technology was applied to the telephone network, how that network then provided the means by which early computers could be connected together, and from there to subsequently offer access to information services. Packet switching, the home computer, modems, optical fibre and the Internet are reviewed in terms of their importance in the creation of and growth in the World Wide Web. Finally, the application of digital technology to the mobile phone is discussed in terms of the development of mobile networks and the evolution of the handset into today’s smart phones. The paper concludes by recognising that much of the archaeological evidence of communication’s digital age has already been lost and that urgent action is needed to put in place appropriate preservation strategies
    corecore