14 research outputs found

    Behavioral Characterization of the Novel GABA B Receptor- Positive Modulator GS39783 (N,NЈ-Dicyclopentyl-2- methylsulfanyl-5-nitro-pyrimidine-4,6-diamine): Anxiolytic-Like Activity without Side Effects Associated with Baclofen or Benzodiazepines

    Get PDF
    ABSTRACT The role of GABA B receptors in various behavioral processes has been largely defined using the prototypical GABA B receptor agonist baclofen. However, baclofen induces sedation, hypothermia and muscle relaxation, which may interfere with its use in behavioral paradigms. Although there is much evidence for a role of the inhibitory neurotransmitter GABA in the pathophysiology of anxiety, the role of GABA B receptors in these disorders is largely unclear. We recently identified GS39783 (N,NЈ-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine) as a selective allosteric positive modulator at GABA B receptors. The aim of the present study was to broadly characterize the effects of GS39783 in well-validated rodent models for motor activity, cognition, and anxiety. The following tests were included: locomotor activity in rats and mice, rotarod and traction tests (including determinations of core temperature) in mice, passive avoidance in mice and rats, elevated plus maze in rats, elevated zero maze in mice and rats, stress-induced hyperthermia in mice, and pentobarbital-and ethanol-induced sleep in mice. Unlike baclofen and/or the benzodiazepine chlordiazepoxide, GS39783 had no effect in any of the tests for locomotion, cognition, temperature, or narcosis. Most interestingly, GS39783 had anxiolytic-like effects in all the tests used. Overall, the data obtained here suggest that positive modulation of GABA B receptors may serve as a novel therapeutic strategy for the development of anxiolytics, with a superior side effect profile to both baclofen and benzodiazepines

    Gastrin-Releasing Peptide Signaling Plays a Limited and Subtle Role in Amygdala Physiology and Aversive Memory

    Get PDF
    Links between synaptic plasticity in the lateral amygdala (LA) and Pavlovian fear learning are well established. Neuropeptides including gastrin-releasing peptide (GRP) can modulate LA function. GRP increases inhibition in the LA and mice lacking the GRP receptor (GRPR KO) show more pronounced and persistent fear after single-trial associative learning. Here, we confirmed these initial findings and examined whether they extrapolate to more aspects of amygdala physiology and to other forms of aversive associative learning. GRP application in brain slices from wildtype but not GRPR KO mice increased spontaneous inhibitory activity in LA pyramidal neurons. In amygdala slices from GRPR KO mice, GRP did not increase inhibitory activity. In comparison to wildtype, short- but not long-term plasticity was increased in the cortico-lateral amygdala (LA) pathway of GRPR KO amygdala slices, whereas no changes were detected in the thalamo-LA pathway. In addition, GRPR KO mice showed enhanced fear evoked by single-trial conditioning and reduced spontaneous firing of neurons in the central nucleus of the amygdala (CeA). Altogether, these results are consistent with a potentially important modulatory role of GRP/GRPR signaling in the amygdala. However, administration of GRP or the GRPR antagonist (D-Phe6, Leu-NHEt13, des-Met14)-Bombesin (6–14) did not affect amygdala LTP in brain slices, nor did they affect the expression of conditioned fear following intra-amygdala administration. GRPR KO mice also failed to show differences in fear expression and extinction after multiple-trial fear conditioning, and there were no differences in conditioned taste aversion or gustatory neophobia. Collectively, our data indicate that GRP/GRPR signaling modulates amygdala physiology in a paradigm-specific fashion that likely is insufficient to generate therapeutic effects across amygdala-dependent disorders

    Behavioral Effects of Cannabinoid Agents in Animals

    No full text

    Fear-reducing effects of intra-amygdala neuropeptide Y infusion in animal models of conditioned fear: an NPY Y1 receptor independent effect

    No full text
    RATIONALE: Neuropeptide Y (NPY) and its receptors are densely localized in brain regions involved in the mediation and modulation of fear, including the amygdala. Several studies showed that central NPY is involved in the modulation of fear and anxiety. OBJECTIVES: In the present study, we investigated (1) whether intra-amygdala injections of NPY affect the expression of conditioned fear and (2) whether NPY Y1 receptors (Y1R) mediates the effects of these intra-amygdaloid NPY injections. RESULTS: Intra-amygdala NPY injections robustly decreased the expression of conditioned fear measured by conditioned freezing and fear-potentiated startle. These NPY effects were not mimicked by intra-amygdala injections of the Y1R agonists Y-28 or Y-36, and co-infusion of the Y1R antagonist BIBO 3304 did not block the NPY effects. Furthermore, we tested Y1R-deficient mice in conditioned freezing and found no differences between wild type and mutant littermates. Finally, we injected NPY into the amygdala of Y1R-deficient mice. Y1R deficiency had no effect on the fear-reducing effects of intra-amygdala NPY. CONCLUSIONS: These data show an important role of the transmitter NPY within the amygdala for the expression of conditioned fear. Y1R do not appear to be involved in the mediation of the observed intra-amygdala NPY effects suggesting that these effects are mediated via other NPY receptors

    Relationship between tendon structure, stiffness, gait patterns and patient reported outcomes during the early stages of recovery after an Achilles tendon rupture

    No full text
    After an Achilles tendon (AT) injury, the decision to return to full weightbearing for the practice of sports or strenuous activities is based on clinical features only. In this study, tendon stiffness and foot plantar pressure, as objective quantitative measures that could potentially inform clinical decision making, were repeatedly measured in 15 patients until 3 months after the AT rupture by using shear wave elastography (SWE) and wearable insoles, respectively. Meanwhile, patient reported outcomes assessing the impact on physical activity were evaluated using the Achilles Tendon Total Rupture Score (ATRS). At week-2 post-injury, stiffness of the injured tendon varied from 6.00 ± 1.62 m/s (mean ± SD) close to the rupture to 8.91 ± 2.29 m/s when measured more distally. While near complete recovery was observed in distal and middle regions at week-8, the shear wave velocity in the proximal region recovered to only 65% of the contralateral value at week-12. In a parallel pre-clinical study, the tendon stiffness measured in vivo by SWE in a rat model was found to be strongly correlated with ex vivo values of the Young’s modulus, which attests to the adequacy of SWE for these measures. The insole derived assessment of the plantar pressure distribution during walking showed slight sub-optimal function of the affected foot at week-12, while the ATRS score recovered to a level of 59 ± 16. Significant correlations found between tendon stiffness, insole variables and distinct ATRS activities, suggest clinical relevance of tendon stiffness and foot plantar pressure measurements. These results illustrate how an alteration of the AT structure can impact daily activities of affected patients and show how digital biomarkers can track recovery in function over time.ISSN:2045-232

    Behavioral characterization of the novel GABAB receptor-positive modulator GS39783 (N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine) : anxiolytic-like activity without side effects associated with baclofen or benzodiazepines

    No full text
    The role of GABAB receptors in various behavioral processes has been largely defined using the prototypical GABAB receptor agonist baclofen. However, baclofen induces sedation, hypothermia and muscle relaxation, which may interfere with its use in behavioral paradigms. Although there is much evidence for a role of the inhibitory neurotransmitter GABA in the pathophysiology of anxiety, the role of GABAB receptors in these disorders is largely unclear. We recently identified GS39783 (N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine) as a selective allosteric positive modulator at GABAB receptors. The aim of the present study was to broadly characterize the effects of GS39783 in well-validated rodent models for motor activity, cognition, and anxiety. The following tests were included: locomotor activity in rats and mice, rotarod and traction tests (including determinations of core temperature) in mice, passive avoidance in mice and rats, elevated plus maze in rats, elevated zero maze in mice and rats, stress-induced hyperthermia in mice, and pentobarbital- and ethanol-induced sleep in mice. Unlike baclofen and/or the benzodiazepine chlordiazepoxide, GS39783 had no effect in any of the tests for locomotion, cognition, temperature, or narcosis. Most interestingly, GS39783 had anxiolytic-like effects in all the tests used. Overall, the data obtained here suggest that positive modulation of GABAB receptors may serve as a novel therapeutic strategy for the development of anxiolytics, with a superior side effect profile to both baclofen and benzodiazepines

    Differential roles of mGlu7 and mGlu8 in amygdala physiology and in amygdala-dependent behavior

    No full text
    Glutamate transmission within the amygdala is crucial for amygdaloid plasticity and the learning and expression of conditioned fear. Glutamate activates both ionotropic glutamate receptors and eight subtypes of metabotropic glutamate receptors (mGlu1-8). In the present study, the roles of mGlu7 and mGlu8 in different in vitro and in vivo paradigms of amygdaloid plasticity and behavior were investigated. We show that mGlu7-deficient but not mGlu8-deficient mice have attenuated long-term potention (LTP) within the amygdala. mGlu7-deficient mice express a general deficit in conditioned fear wheras in mGlu8-deficient mice, only contextual fear is strongly reduced . The mGlu7 agonist AMN082 reduces amygdaloid LTP and blocks the learning of conditioned fear after intra-amygdala injections. In contrast, the mGlu8 agonist DCPG decreased synaptic transmission within the amygdala but not LTP. Intra-amygdala injections of DCPG do only affect expression of contextual fear but not the learning and expression of cued fear. Taken together, these data revealed very different roles for amygdaloid mGlu7 and mGlu8 in the learning and expression of conditioned fear. Both receptors may be promising targets for the treatment of anxiety disorders; mGlu7 for anxiety disorders with pathological fear learning and mGlu8 for anxiety disorders with exaggerated contextual fear

    AQW051, a novel, potent and selective α7 nicotinic acetylcholine receptor partial agonist: Pharmacological characterization and phase I evaluation

    Full text link
    BACKGROUND AND PURPOSE: Activation of the α7 nicotinic acetylcholine receptor (nAChR) is considered an attractive target for the treatment of cognitive impairment associated with neurological disorders. Here we describe the novel α7-nAChR agonist AQW051 as a promising drug candidate for this indication. EXPERIMENTAL APPROACH: AQW051 was functionally characterized in vitro and cognitive effects evaluated in rodent behavioural models. Pharmacokinetics and tolerability were evaluated in three phase I placebo-controlled studies in 180 healthy subjects. KEY RESULTS: In vitro, AQW051 bound with high affinity to α7-nAChR and stimulated calcium influx in cells recombinantly expressing the human α7-nAChR. In vivo, AQW051 demonstrated good oral bioavailability and rapid penetration into the rodent brain. AQW051 administered over a broad dose range facilitated learning/memory performance in the object recognition and social recognition test in mice and the water maze model in aged rats. Clinically, AQW051 was well tolerated in healthy young and elderly subjects, with an adverse event (AE) profile comparable with placebo. No serious AEs were reported and all AEs were either mild or moderate in severity at single oral doses up to 200 mg and multiple daily doses up to 75 mg. Once-daily oral administration of AQW051 resulted in continuous exposure and a 2-3-fold accumulation compared with steady state was achieved by 1 week. CONCLUSIONS AND IMPLICATIONS: These data support further development of AQW051 as a cognitive-enhancing agent, for example in Alzheimer's disease or schizophrenia
    corecore