16 research outputs found
Identification of Glycine Receptor α3 as a Colchicine-Binding Protein
Colchicine (Col) is considered a kind of highly effective alkaloid for preventing and treating acute gout attacks (flares). However, little is known about the underlying mechanism of Col in pain treatment. We have previously developed a customized virtual target identification method, termed IFPTarget, for small-molecule target identification. In this study, by using IFPTarget and ligand similarity ensemble approach (SEA), we show that the glycine receptor alpha 3 (GlyRα3), which play a key role in the processing of inflammatory pain, is a potential target of Col. Moreover, Col binds directly to the GlyRα3 as determined by the immunoprecipitation and bio-layer interferometry assays using the synthesized Col-biotin conjugate (linked Col and biotin with polyethylene glycol). These results suggest that GlyRα3 may mediate Col-induced suppression of inflammatory pain. However, whether GlyRα3 is the functional target of Col and serves as potential therapeutic target in gouty arthritis requires further investigations
Geometric Evolvement, Simulation, and Test of a Bionic Lateral PDC Reamer Bit Inspired by Capra sibirica Horn
PDC (polycrystalline diamond compact) bit is the key equipment for drilling holes inside the rock in oil and mining industry. Inspired by the shape and structure of Capra sibirica horn, a bionic lateral PDC reamer bit with variable lateral reaming radius was developed. Side view of Capra sibirica horn was employed for fitting the horn shape curve based on picture processing method. PDC teeth were arranged on the horn shape blade imitating the transverse ridges on the horn to cut the rock material, found with only 30% utilization rate of the total teeth and load concentration of the last tooth. A bionic blade curve evolved from the Capra sibirica horn was defined with geometric method for the lateral reamer bit; the utilization rate of the teeth on the bionic blade curve was improved to 90% with uniformly distributed reaming load. Multigroup simulations were conducted with the finite element method; the effects of bit revolution speed and rotation feed speed of the bionic blade to reaming load were emphatically studied. Concrete sample was reamed indoors from 240 mm to 407 mm in diameter, and the bionic lateral PDC reamer bit was approved by the test result
Synthesis and Biological Evaluation of a Novel Glycidyl Metharcylate/Phaytic Acid-Based on Bagasse Xylan Composite Derivative
The development of natural biomass materials with excellent properties is an attractive way to improve the application range of natural polysaccharides. Bagasse Xylan (BX) is a natural polysaccharide with various biological activities, such as antitumor, antioxidant, etc. Its physic-chemical and biological properties can be improved by functionalization. For this purpose, a novel glycidyl metharcylate/phytic acid based on a BX composite derivative was synthesized by a free radical polymerization technique with glycidyl metharcylate (GMA; GMABX) and further esterification with phytic acid (PA; GMABX-PA) in ionic liquid. The effects of the reaction conditions (i.e., temperature, time, initiator concentration, catalyst concentration, GMA concentration, PA concentration, mass of ionic liquid) on grafting rate(G), conversion rate(C) and degree of substitution(DS) are discussed. The structure of the composite material structure was confirmed by FTIR, 1H NMR and XRD. SEM confirmed the particle morphology of the composite derivative. The thermal stability of GMABX-PA was determined by TG-DTG. Molecular docking was further performed to study the combination mode of the GMABX-PA into the active site of two lung cancer proteins (5XNV, 2EB2) and a blood cancer protein (2M6N). In addition, tumor cell proliferation inhibition assays for BX, GMABX-PA were carried out using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetraz -olium bromide (MTT) method. The results showed that various reaction conditions exhibited favorable gradient curves, and that a maximum G of 56% for the graft copolymerization and a maximum DS of 0.267 can be achieved. The thermal stability was significantly improved, as demonstrated by the fact that there was still 60% residual at 800 °C. The molecular docking software generated satisfactory results with regard to the evaluated binding energy and combining sites. The inhibition ratio of GMABX-PA on NCI-H460 (lung cancer cells) reached 29.68% ± 4.45%, which is five times higher than that of BX. Therefore, the material was shown to be a potential candidate for biomedical applications as well as for use as a heat resistant material
An integrated multi-omics analysis of identifies distinct molecular characteristics in pulmonary infections of Pseudomonas aeruginosa.
Pseudomonas aeruginosa (P. aeruginosa) can cause severe acute infections, including pneumonia and sepsis, and cause chronic infections, commonly in patients with structural respiratory diseases. However, the molecular and pathophysiological mechanisms of P. aeruginosa respiratory infection are largely unknown. Here, we performed assays for transposase-accessible chromatin using sequencing (ATAC-seq), transcriptomics, and quantitative mass spectrometry-based proteomics and ubiquitin-proteomics in P. aeruginosa-infected lung tissues for multi-omics analysis, while ATAC-seq and transcriptomics were also examined in P. aeruginosa-infected mouse macrophages. To identify the pivotal factors that are involved in host immune defense, we integrated chromatin accessibility and gene expression to investigate molecular changes in P. aeruginosa-infected lung tissues combined with proteomics and ubiquitin-proteomics. Our multi-omics investigation discovered a significant concordance for innate immunological and inflammatory responses following P. aeruginosa infection between hosts and alveolar macrophages. Furthermore, we discovered that multi-omics changes in pioneer factors Stat1 and Stat3 play a crucial role in the immunological regulation of P. aeruginosa infection and that their downstream molecules (e.g., Fas) may be implicated in both immunosuppressive and inflammation-promoting processes. Taken together, these findings indicate that transcription factors and their downstream signaling molecules play a critical role in the mobilization and rebalancing of the host immune response against P. aeruginosa infection and may serve as potential targets for bacterial infections and inflammatory diseases, providing insights and resources for omics analyses
MicroRNA-302b negatively regulates IL-1β production in response to MSU crystals by targeting IRAK4 and EphA2
Abstract Background Interleukin-1β (IL-1β) is a pivotal proinflammatory cytokine that is strongly associated with the inflammation of gout. However, the underlying mechanism through which the production of IL-1β is regulated has not been fully elucidated. Our previous work identified that miR-302b had an important immune regulatory role in bacterial lung infections. This study was conducted to evaluate the function of miR-302b on monosodium urate (MSU) crystal-induced inflammation and its mechanism. Methods The expression pattern and the immune-regulatory role of miR-302b were evaluated both in vitro and in vivo. The functional targets of miR-302b were predicted by bioinformatics, and then validated by genetic approaches. In addition, the clinical feature of miR-302b was analyzed using serum samples of patients with gouty arthritis. Results The extremely high expression of miR-302b was observed in both macrophages and mouse air membranes treated with MSU. Intriguingly, overexpression of miR-302b regulated NF-κB and caspase-1 signaling, leading to significantly attenuate MSU-induced IL-1β. By genetic analysis, miR-302b exhibited inhibitory function on IRAK4 and EphA2 by binding to their 3′-UTR regions. Corporately silencing IRAK4 and EphA2 largely impaired MSU-induced IL-1β protein production. Moreover, it was also found that miR-302b and EphA2 suppressed the migration of macrophages. Finally, it was observed that high expression of miR-302b was a general feature in patients with gouty arthritis. Conclusions These results suggest that miR-302b can regulate IL-1β production in MSU-induced inflammation by targeting NF-κB and caspase-1 signaling, and may be a potential therapeutic target for gouty arthritis
Single‐cell transcriptomics reveals distinct cell response between acute and chronic pulmonary infection of Pseudomonas aeruginosa
Abstract Knowledge of the changes in the immune microenvironment during pulmonary bacterial acute and chronic infections is limited. The dissection of immune system may provide a basis for effective therapeutic strategies against bacterial infection. Here, we describe a single immune cell atlas of mouse lungs after acute and chronic Pseudomonas aeruginosa infection using single‐cell transcriptomics, multiplex immunohistochemistry, and flow cytometry. Our single‐cell transcriptomic analysis revealed large‐scale comprehensive changes in immune cell composition and high variation in cell–cell interactions after acute and chronic P. aeruginosa infection. Bacterial infection reprograms the genetic architecture of immune cell populations. We identified specific immune cell types, including Cxcl2+ B cells and interstitial macrophages, in response to acute and chronic infection, such as their proportions, distribution, and functional status. Importantly, the patterns of immune cell response are drastically different between acute and chronic infection models. The distinct molecular signatures highlight the importance of the highly dynamic cell–cell interaction process in different pathological conditions, which has not been completely revealed previously. These findings provide a comprehensive and unbiased immune cellular landscape for respiratory pathogenesis in mice, enabling further understanding of immunologic mechanisms in infection and inflammatory diseases
Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets
Atomically thin 2D-layered transition-metal dichalcogenides have been studied extensively in recent years because of their intriguing physical properties and promising applications in nanoelectronic devices. Among them, ReSe2 is an emerging material that exhibits a stable distorted IT phase and strong in-plane anisotropy due to its reduced crystal symmetry. Here, the anisotropic nature of ReSe2 is revealed by Raman spectroscopy under linearly polarized excitations in which different vibration modes exhibit pronounced periodic variations in intensity. Utilizing high-quality ReSe2 nanosheets, top-gate ReSe2 field-effect transistors were built that show an excellent on/off current ratio exceeding 10(7) and a well-developed current saturation in the current voltage characteristics at room temperature. Importantly, the successful synthesis of ReSe2 directly onto hexagonal boron nitride substrates has effectively improved the electron motility over 500 times and the hole mobility over 100 times at low temperatures. Strikingly, corroborating with our density-functional calculations, the ReSe2-based photodetectors exhibit a polarization sensitive photoresponsivity due to the intrinsic linear dichroism originated from high in-plane optical anisotropy. With a back-gate voltage, the linear dichroism photodetection can be unambiguously tuned both in the electron and hole regime. The appealing physical properties demonstrated in this study clearly identify ReSe2 as a highly anisotropic 2D material for exotic electronic and optoelectronic applications