11 research outputs found

    Integrated Distance-Based Origami Paper Analytical Device for One-Step Visualized Analysis

    No full text
    An integrated distance-based origami paper analytical device (ID-<i>o</i>PAD) is developed for simple, user friendly and visual detection of targets of interest. The platform enables complete integration of target recognition, signal amplification, and visual signal output based on aptamer/invertase-functionalized sepharose beads, cascaded enzymatic reactions, and a 3D microfluidic paper-based analytical device with distance-based readout, respectively. The invertase–DNA conjugate is released upon target addition, after which it permeates through the cellulose and flows down into the bottom detection zone, whereas sepharose beads with larger size are excluded and stay in the upper zone. Finally, the released conjugate initiates cascaded enzymatic reactions and translates the target signal into a brown bar chart reading. By simply closing the device, the ID-<i>o</i>PAD enables a sample-in-answer-out assay within 30 min with visual and quantitative readout. Importantly, bound/free probe separation is achieved by taking advantage of the size difference between sepharose beads and cellulose pores, and the downstream enzymatic amplification is realized based on the compatibility of multiple enzymes with corresponding substrates. Overall, with the advantages of low-cost, disposability, simple operation, and visual quantitative readout, the ID-<i>o</i>PAD offers an ideal platform for point-of-care testing, especially in resource-limited areas

    Logic-Gates of Gas Pressure for Portable, Intelligent and Multiple Analysis of Metal Ions

    No full text
    DNA logic gates have shown outstanding magic in intelligent biology applications, but it remains challenging to construct a portable, affordable and convenient DNA logic gate. Herein, logic gates of gas pressure were innovatively developed for multiplex analysis of metal ions. Hg2+ and Ag+ were input to interact specifically with the respective mismatched base pairs, which activated DNA extension reaction by polymerase and led to the enrichment of platinum nanoparticles for catalyzing the decomposition of peroxide hydrogen. Thus, the gas pressure obtained from a sealed well was used as output for detecting or identifying metal ions. Hg2+ and Ag+ were sensitively and selectively detected, and the assay of the real samples was also satisfactory. Based on this, DNA logic gates, including YES, NOT, AND, OR, NAND, NOR, INHIBIT, and XOR were successfully established using a portable and hand-held gas pressure meter as detector. So, the interactions between DNA and metal ions were intelligently transferred into the output of gas pressure, which made metal ions to be detected portably and identified intelligently. Given the remarkable merits of simplicity, logic operation, and portable output, the metal ion-driven DNA logic gate of gas pressure provides a promising way for intelligent and portable biosensing

    Portable and Label-Free Sensor Array for Discriminating Multiple Analytes via a Handheld Gas Pressure Meter

    No full text
    Cross-reactive sensor arrays are useful for discriminating multiple analytes in a complex sample. Herein, a portable and label-free gas pressure sensor array was proposed for multiplex analysis via a handheld gas pressure meter. It is based on the interaction diversity of analytes with catalase-like nanomaterials, including Pt nanoparticles (PtNP), Co3O4 nanosheets (Co3O4NS), and Pt–Co alloy nanosheets (PtCoNS), respectively. Thus, the diverse influence of analytes on the catalase-like activity could be output as the difference in the gas pressure. By using principal component analysis, eight proteins were well distinguished by the gas pressure sensor array at the 10 nM level within 12 min. Moreover, different concentrations of proteins and mixtures of proteins could likewise be discriminated. More importantly, the effective discrimination of proteins in human serum and discrimination of five kinds of cells further confirmed the potential of the gas pressure sensor array. Therefore, it provides a portable, cheap, sensitive, and label-free gas pressure sensor array, which is totally different from the reported sensor arrays and holds great potential for portable and cheap discrimination of multiple analytes

    Dual-Mode Logic Gate for Intelligent and Portable Detection of MicroRNA Based on Gas Pressure and Lateral Flow Assay

    No full text
    Molecular logic gate provides an intelligent option for simultaneous detection of biomarkers. Herein, a dual-mode DNA logic gate was proposed to portably and intelligently detect multiple microRNAs (miRNAs) by gas pressure biosensing and lateral flow assay (LFA). A platinum-coated gold nanoparticle (Au@PtNP) with catalase-like activity was used as a signal reporter to achieve a dual-signal readout. MiRNAs as the input initiated the cyclic strand displacement reaction (SDR) to enrich a large amount of Au@PtNPs. Thus, miRNA can be visually detected by a lateral flow strip (LFS) using the grayish-brown color of Au@PtNPs as output 1. Furthermore, Au@PtNP-catalyzed decomposition of H2O2 resulted in gas pressure as output 2, which was measured by a digital and handheld gas pressure meter. As a consequence, microRNA 21 (miR-21) was sensitively and reliably detected with the limit of detection (LOD) of 7.2 pM. The selectivity and real sample analysis were both satisfactory. Significantly, two-input and three-input AND logic gates were successfully developed to realize multiple detection of two miRNAs and three miRNAs, which provide a promising way for intelligent multi-input analysis. Predictably, with the advantages of portability, simplicity, and affordability, the dual-mode logic gate based on gas pressure biosensing and LFA offers a new perspective on the field of intelligent and portable biosensing and bioanalysis

    Integrated Distance-Based Origami Paper Analytical Device for One-Step Visualized Analysis

    No full text
    An integrated distance-based origami paper analytical device (ID-<i>o</i>PAD) is developed for simple, user friendly and visual detection of targets of interest. The platform enables complete integration of target recognition, signal amplification, and visual signal output based on aptamer/invertase-functionalized sepharose beads, cascaded enzymatic reactions, and a 3D microfluidic paper-based analytical device with distance-based readout, respectively. The invertase–DNA conjugate is released upon target addition, after which it permeates through the cellulose and flows down into the bottom detection zone, whereas sepharose beads with larger size are excluded and stay in the upper zone. Finally, the released conjugate initiates cascaded enzymatic reactions and translates the target signal into a brown bar chart reading. By simply closing the device, the ID-<i>o</i>PAD enables a sample-in-answer-out assay within 30 min with visual and quantitative readout. Importantly, bound/free probe separation is achieved by taking advantage of the size difference between sepharose beads and cellulose pores, and the downstream enzymatic amplification is realized based on the compatibility of multiple enzymes with corresponding substrates. Overall, with the advantages of low-cost, disposability, simple operation, and visual quantitative readout, the ID-<i>o</i>PAD offers an ideal platform for point-of-care testing, especially in resource-limited areas

    Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics

    No full text
    Digital microfluidics (DMF) is a powerful platform for a broad range of applications, especially immunoassays having multiple steps, due to the advantages of low reagent consumption and high automatization. Surface enhanced Raman scattering (SERS) has been proven as an attractive method for highly sensitive and multiplex detection, because of its remarkable signal amplification and excellent spatial resolution. Here we propose a SERS-based immunoassay with DMF for rapid, automated, and sensitive detection of disease biomarkers. SERS tags labeled with Raman reporter 4-mercaptobenzoic acid (4-MBA) were synthesized with a core@shell nanostructure and showed strong signals, good uniformity, and high stability. A sandwich immunoassay was designed, in which magnetic beads coated with antibodies were used as solid support to capture antigens from samples to form a beads–antibody–antigen immunocomplex. By labeling the immunocomplex with a detection antibody-functionalized SERS tag, antigen can be sensitively detected through the strong SERS signal. The automation capability of DMF can greatly simplify the assay procedure while reducing the risk of exposure to hazardous samples. Quantitative detection of avian influenza virus H5N1 in buffer and human serum was implemented to demonstrate the utility of the DMF-SERS method. The DMF-SERS method shows excellent sensitivity (LOD of 74 pg/mL) and selectivity for H5N1 detection with less assay time (<1 h) and lower reagent consumption (∼30 μL) compared to the standard ELISA method. Therefore, this DMF-SERS method holds great potentials for automated and sensitive detection of a variety of infectious diseases

    Microwell Array Method for Rapid Generation of Uniform Agarose Droplets and Beads for Single Molecule Analysis

    No full text
    Compartmentalization of aqueous samples in uniform emulsion droplets has proven to be a useful tool for many chemical, biological, and biomedical applications. Herein, we introduce an array-based emulsification method for rapid and easy generation of monodisperse agarose-in-oil droplets in a PDMS microwell array. The microwells are filled with agarose solution, and subsequent addition of hot oil results in immediate formation of agarose droplets due to the surface-tension of the liquid solution. Because droplet size is determined solely by the array unit dimensions, uniform droplets with preselectable diameters ranging from 20 to 100 μm can be produced with relative standard deviations less than 3.5%. The array-based droplet generation method was used to perform digital PCR for absolute DNA quantitation. The array-based droplet isolation and sol–gel switching property of agarose enable formation of stable beads by chilling the droplet array at −20 °C, thus, maintaining the monoclonality of each droplet and facilitating the selective retrieval of desired droplets. The monoclonality of droplets was demonstrated by DNA sequencing and FACS analysis, suggesting the robustness and flexibility of the approach for single molecule amplification and analysis. We believe our approach will lead to new possibilities for a great variety of applications, such as single-cell gene expression studies, aptamer selection, and oligonucleotide analysis

    Microwell Array Method for Rapid Generation of Uniform Agarose Droplets and Beads for Single Molecule Analysis

    No full text
    Compartmentalization of aqueous samples in uniform emulsion droplets has proven to be a useful tool for many chemical, biological, and biomedical applications. Herein, we introduce an array-based emulsification method for rapid and easy generation of monodisperse agarose-in-oil droplets in a PDMS microwell array. The microwells are filled with agarose solution, and subsequent addition of hot oil results in immediate formation of agarose droplets due to the surface-tension of the liquid solution. Because droplet size is determined solely by the array unit dimensions, uniform droplets with preselectable diameters ranging from 20 to 100 μm can be produced with relative standard deviations less than 3.5%. The array-based droplet generation method was used to perform digital PCR for absolute DNA quantitation. The array-based droplet isolation and sol–gel switching property of agarose enable formation of stable beads by chilling the droplet array at −20 °C, thus, maintaining the monoclonality of each droplet and facilitating the selective retrieval of desired droplets. The monoclonality of droplets was demonstrated by DNA sequencing and FACS analysis, suggesting the robustness and flexibility of the approach for single molecule amplification and analysis. We believe our approach will lead to new possibilities for a great variety of applications, such as single-cell gene expression studies, aptamer selection, and oligonucleotide analysis

    In Situ Pt Staining Method for Simple, Stable, and Sensitive Pressure-Based Bioassays

    No full text
    Pressure-based bioassays (PASS) integrate a molecular recognition process with a catalyzed gas generation reaction, enabling sensitive and portable quantitation of biomarkers in clinical samples. Using platinum nanoparticles (PtNPs) as a catalyst has significantly improved the sensitivity of PASS compared with protein enzyme-based detection. However, PtNPs are easily deactivated during storage or after being decorated with antibodies. Moreover, nonspecific adsorption of PtNPs on substrates has been a problem, resulting in significant backgrounds. To solve these problems of PtNP-based detection, we report a robust, simple, stable, and sensitive Pt staining method for PASS. Detection antibody-decorated gold nanoparticles (AuNPs) are used to perform enzyme-linked immunosorbent assay, followed by Pt staining to stain AuNPs with Ag and Pt bimetallic shells (Au@AgPtNPs), which endow AuNPs with catalytic activity. The concentration of targets can be quantitatively determined by measuring the pressure due to O<sub>2</sub> gas (g) formed by the decomposition of H<sub>2</sub>O<sub>2</sub> catalyzed by Au@AgPtNPs. C-reactive protein and avian influenza hemagglutinin 5 neuraminidase 1 can be quantitatively detected with detection limits of 0.015 and 0.065 ng/mL, respectively. The simple, stable, and sensitive properties of the Pt staining-based method will largely broaden the applications of PASS in clinical diagnosis and biomedicine

    Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging

    No full text
    Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly­(ethylene glycol) thiol (mPEG–SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl<sub>4</sub> was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging
    corecore