158 research outputs found

    Deep-LK for Efficient Adaptive Object Tracking

    Full text link
    In this paper we present a new approach for efficient regression based object tracking which we refer to as Deep- LK. Our approach is closely related to the Generic Object Tracking Using Regression Networks (GOTURN) framework of Held et al. We make the following contributions. First, we demonstrate that there is a theoretical relationship between siamese regression networks like GOTURN and the classical Inverse-Compositional Lucas & Kanade (IC-LK) algorithm. Further, we demonstrate that unlike GOTURN IC-LK adapts its regressor to the appearance of the currently tracked frame. We argue that this missing property in GOTURN can be attributed to its poor performance on unseen objects and/or viewpoints. Second, we propose a novel framework for object tracking - which we refer to as Deep-LK - that is inspired by the IC-LK framework. Finally, we show impressive results demonstrating that Deep-LK substantially outperforms GOTURN. Additionally, we demonstrate comparable tracking performance to current state of the art deep-trackers whilst being an order of magnitude (i.e. 100 FPS) computationally efficient

    Springback analysis of AA5754 after hot stamping: experiments and FE modelling

    Get PDF
    In this paper, the springback of the aluminium alloy AA5754 under hot stamping conditions was characterised under stretch and pure bending conditions. It was found that elevated temperature stamping was beneficial for springback reduction, particularly when using hot dies. Using cold dies, the flange springback angle decreased by 9.7 % when the blank temperature was increased from 20 to 450 °C, compared to the 44.1 % springback reduction when hot dies were used. Various other forming conditions were also tested, the results of which were used to verify finite element (FE) simulations of the processes in order to consolidate the knowledge of springback. By analysing the tangential stress distributions along the formed part in the FE models, it was found that the springback angle is a linear function of the average through-thickness stress gradient, regardless of the forming conditions used

    An Ensemble Multilabel Classification for Disease Risk Prediction

    Get PDF
    It is important to identify and prevent disease risk as early as possible through regular physical examinations. We formulate the disease risk prediction into a multilabel classification problem. A novel Ensemble Label Power-set Pruned datasets Joint Decomposition (ELPPJD) method is proposed in this work. First, we transform the multilabel classification into a multiclass classification. Then, we propose the pruned datasets and joint decomposition methods to deal with the imbalance learning problem. Two strategies size balanced (SB) and label similarity (LS) are designed to decompose the training dataset. In the experiments, the dataset is from the real physical examination records. We contrast the performance of the ELPPJD method with two different decomposition strategies. Moreover, the comparison between ELPPJD and the classic multilabel classification methods RAkEL and HOMER is carried out. The experimental results show that the ELPPJD method with label similarity strategy has outstanding performance

    Associations between the platelet/high-density lipoprotein cholesterol ratio and likelihood of nephrolithiasis: a cross-sectional analysis in United States adults

    Get PDF
    AimsThe primary objective of this study was to investigate the relationship between the platelet/high-density lipoprotein cholesterol ratio (PHR) and the prevalence of nephrolithiasis within the adult population of the United States.MethodsThe data used in this study were obtained from the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2018. The analysis included a non-pregnant population aged 20 years or older, providing proper PHR index and nephrolithiasis data. The research utilized subgroup analyses and weighted univariate and multivariable logistic regression to evaluate the independent association between the PHR and the susceptibility to nephrolithiasis.ResultsThe study comprised 30,899 participants with an average PHR value of 19.30 ± 0.11. The overall prevalence rate of nephrolithiasis was estimated at 9.98% with an increase in the higher PHR tertiles (T1, 8.49%; T2, 10.11%; T3, 11.38%, P < 0.0001). An elevated PHR level was closely linked with a higher susceptibility to nephrolithiasis. Compared with patients in T1, and after adjusting for potential confounders in model 2, the corresponding odds ratio for nephrolithiasis in T3 was 1.48 (95% CI: 1.06 to 2.08), with a P-value = 0.02. The results of the interaction tests revealed a significant impact of chronic kidney disease on the relationship between PHR and nephrolithiasis. Furthermore, the restricted cubic spline analyses exhibited a positive, non-linear correlation between PHR and the risk of nephrolithiasis.ConclusionA convenient biomarker, the PHR, was independently associated with nephrolithiasis and could be a novel biomarker in predicting occurrence in clinical decision

    Autoencoding a Soft Touch to Learn Grasping from On-land to Underwater

    Full text link
    Robots play a critical role as the physical agent of human operators in exploring the ocean. However, it remains challenging to grasp objects reliably while fully submerging under a highly pressurized aquatic environment with little visible light, mainly due to the fluidic interference on the tactile mechanics between the finger and object surfaces. This study investigates the transferability of grasping knowledge from on-land to underwater via a vision-based soft robotic finger that learns 6D forces and torques (FT) using a Supervised Variational Autoencoder (SVAE). A high-framerate camera captures the whole-body deformations while a soft robotic finger interacts with physical objects on-land and underwater. Results show that the trained SVAE model learned a series of latent representations of the soft mechanics transferrable from land to water, presenting a superior adaptation to the changing environments against commercial FT sensors. Soft, delicate, and reactive grasping enabled by tactile intelligence enhances the gripper's underwater interaction with improved reliability and robustness at a much-reduced cost, paving the path for learning-based intelligent grasping to support fundamental scientific discoveries in environmental and ocean research.Comment: 17 pages, 5 figures, 1 table, submitted to Advanced Intelligent Systems for revie

    An Ensemble Multilabel Classification for Disease Risk Prediction

    Get PDF
    It is important to identify and prevent disease risk as early as possible through regular physical examinations. We formulate the disease risk prediction into a multilabel classification problem. A novel Ensemble Label Power-set Pruned datasets Joint Decomposition (ELPPJD) method is proposed in this work. First, we transform the multilabel classification into a multiclass classification. Then, we propose the pruned datasets and joint decomposition methods to deal with the imbalance learning problem. Two strategies size balanced (SB) and label similarity (LS) are designed to decompose the training dataset. In the experiments, the dataset is from the real physical examination records. We contrast the performance of the ELPPJD method with two different decomposition strategies. Moreover, the comparison between ELPPJD and the classic multilabel classification methods RAkEL and HOMER is carried out. The experimental results show that the ELPPJD method with label similarity strategy has outstanding performance
    corecore