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It is important to identify and prevent disease risk as early as possible through regular physical examinations. We formulate the
disease risk prediction into a multilabel classification problem. A novel Ensemble Label Power-set Pruned datasets Joint
Decomposition (ELPPJD) method is proposed in this work. First, we transform the multilabel classification into a multiclass
classification. Then, we propose the pruned datasets and joint decomposition methods to deal with the imbalance learning
problem. Two strategies size balanced (SB) and label similarity (LS) are designed to decompose the training dataset. In the
experiments, the dataset is from the real physical examination records. We contrast the performance of the ELPPJD method
with two different decomposition strategies. Moreover, the comparison between ELPPJD and the classic multilabel classification
methods RAkEL and HOMER is carried out. The experimental results show that the ELPPJD method with label similarity
strategy has outstanding performance.

1. Introduction

To identify and prevent chronic diseases as early as possible
is significant. Machine learning can discover hidden knowl-
edge from a huge amount of disease-related data. It is feasible
to construct models for prediction of disease risk based on
big physical examinations data. There are two classic types
of classifiers for the supervised learning: single-label classifi-
cation and multilabel classification, which are based on the
number of class labels of each record. In single-label classifi-
cation, where classes are mutually exclusive by definition,
each instance is associated with one class label. However,
multilabel classification means one instance corresponds to
more class labels. In medical diagnosis, a symptom may
belong to multiple disease types. How to simultaneously pre-
dict the risk of several normal chronic diseases remains a
challenging problem.

In this work, we focus on the multilabel disease risk pre-
diction and high accuracy on the prediction results based on
physical examinations. The proposed method is called
ELPPJD (Ensemble Label Power-set Pruned datasets Joint

Decomposition), which transforms the multilabel classifica-
tion into multiclass classification by an improved label
power-set method. The pruned technique is used to balance
the size of multilabel combination labels. We present a novel
partition strategy to decompose the training dataset based on
label similarity among labels. A large number of experiments
are conducted to compare with other methods. Empirical
evidences consisting of accuracy, precision, recall, and F
measure indicate that proposed ELPPJD has better perfor-
mance than others for disease risk prediction based on phys-
ical examinations.

The traditional healthcare industry is undergoing a
major paradigm shift due to the rapid advances and devel-
opments in mobile and other wireless technologies, which
brings big benefits to the health information management
and prevention of human disease. Based on this work, we
can provide individual health risk self-examination by
developing intelligent mobile applications. Once individual
physical examination outcomes are uploaded, multiple dis-
ease risks could be predicted based on these intelligent
mobile applications.
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2. Related Works

There is plenty of literature that analyzes or predicts the risk
of one single disease at a time. For example, Yeh et al. [1],
Shivakumar and Alby [2], and Neuvirth et al. [3] focused
on diabetes analysis. The models were built for predicting
the cerebrovascular disease [1, 4]. These predictions of single
diseases are formulated into the binary classification prob-
lems. However, multiple-related diseases may appear simul-
taneously, where binary classification cannot deal with it
effectively. In this work, we focus on formulating multilabel
classification to resolve the multidisease risk prediction based
on physical examination records.

Matthew et al. [5] described firstly the multilabel classifi-
cation and defined the multilabel classification tasks in
which some instances belong to multiple classes. Tsoumakas
et al. [6] summarized two multilabel classification methods
consisting of algorithm adaptation and problem transforma-
tion. The algorithm adaptation methods mean that they can
be adapted, extended, and customized to solve the multilabel
learning tasks based on the basic machine learning algo-
rithms. ADABOOST.MH and ADABOOST.MR [7] are
two extensions of ADABOOST based on boosting. ML-
KNN is another algorithm adaptation method, which based
on k-Nearest Neighbors (kNN) [8]. ML-C4.5 algorithm also
is an algorithm-adapted method based on C4.5 algorithm by
modifying the formula to calculate entropy. The problem
transformation methods belong to another type of multilabel
classification. They transform the multilabel learning prob-
lem into a single-label classification problem. Here are three
types of classic problem transformation methods: binary rel-
evance (BR), label power-set (LP), and pair-wise. Binary rel-
evance uses the one-against-all idea to convert the multilabel
problem into L binary classification problems, where L
denotes the size of label set [9]. However, BR suffers from
the label independence assumption, and it fails to utilize
any relationships between labels. Label power-set methods
[9] transform a multilabel problem into a single-label prob-
lem by transforming each instance’s label set Si to an atomic
label li′. For example, the multilabel set a,c,d would become a
single label acd. LP overcomes the label independence
assumption problem, but would suffer the worst-case time
complexity when the size of single label-set is large. Pair-
wise methods [10] use round robin classification with binary
classifiers to solve the multilabel problem. It constructs
Q.(Q-1)/2 classifiers to cover all pairs of labels, which adopt
the majority voting algorithm to combine all the classifiers.
There are some improved methods proposed in some litera-
tures. Read et al. [11] presented a Pruned Sets method (PS),
which focuses on core relationships within multilabel sets
through pruning labels that occur less than a predefined
number of times. This method would reduce the complexity
to deal with a large number of infrequent sets. Random k-
label sets (RAkEL) is an ensemble method, which constructs
each base classifier by considering a small random subset of
labels and learning a single-label classifier for the prediction
of each element in the power-set of this subset [12]. HOMER
[13] is another extended label power-set method, which
constructs a hierarchy tree of label sets. Every node would

produce a classifier in the hierarchy tree. In RAkEL and
HOMER methods, multiple classifiers are constructed.
Classifier chains ensemble method is used for classification
and prediction, where the final prediction is obtained by
summing the predictions by label and applying threshold
for selecting the relevant labels [14]. Madjarov et al. [15]
presented an extensive experimental comparison, which
use 12 multilabel learning methods on 16 evaluation mea-
sures over 11 benchmark datasets.

In summary, different multilabel learning methods have
merits and demerits, which depend on specific applications.
It still remains a challenging problem to accurately and effi-
ciently predict the health or disease risks based on the medi-
cal records. This work is an extension of work originally
presented in conference 2016 BIBM [16]. A multilabel classi-
fication method MLP-TJC was proposed. However, it gives
poor prediction accuracy for the infrequent multilabel classes
and also lacks comprehensive evaluations. In this work, we
improve the previous multilabel method and develop a novel
ensemble method ELPPJD. In the experiments, we expand
the numbers of single labels and combination labels. We also
compare the ELPPJD with other outstanding multilabel clas-
sification methods.

3. Problem Statement

An example of multilabel physical examination records is
shown in Table 1. The disease risk prediction is formulated
into a multilabel classification problem. Given a set of m
medical records D = r1,…, rm , with ri, i = 1,…,m, and a
set of n disease labels L = l1,…, ln , with lj, j = 1,…, n,
denoting one type of disease, each record in D is associated
with one or more disease labels in L. The problem of multila-
bel disease classification can be represented by a tuple of
(ri, Si), where Si is the class label for record ri. Si is a sub-
set of L, which denotes Si ⊆ L. Our objective is to construct
a classification model to predict the disease label Si′ for
every new physical record ri′.

4. An Ensemble Multilabel Classification
Method

We propose a novel ensemble multilabel classification
method ELPPJD (Ensemble Label Power-set Pruned datasets
Joint Decomposition) for the disease risk prediction based on
the physical examination records. It transforms a multilabel
classification problem into a multiclass classification

Table 1: Multilabel physical examination records description.

Records Disease a Disease b Disease c Disease d

r1
∗ ∗ ∗

r2
∗ ∗

r3
∗ ∗

…

rm
∗ ∗ ∗

∗ points out the diseases each physical examination record is associated with.

2 Journal of Healthcare Engineering



problem. The idea comes from the classic label power-set
(LP) method, which overcomes the label independence prob-
lem and takes the correlation among labels into account.
However, LP suffers two fatal weaknesses. One is the

overwhelming time complexity with the increase of the size
of label set. The other is the imbalance problem caused by
new label sets produced in problem transformation. Pruned
datasets and joint decomposition methods are proposed to
reduce complexity of the target label set and to deal with
the imbalance learning problem.

4.1. Multiclass Problem Transformation. There are two steps
for transforming the original multilabel classification prob-
lem into a multiclass classification problem. First, we get
the combination of all the single labels to form a label set L,
L = l1, l2,…, ln . We use the full enumeration method to
reassemble L into L′, where L′ includes all subsets of L. Here,
each subset denotes a multilabel class label. As an example,
the full enumeration method is illustrated in Figure 1.
Second, we map each original record by associating it with
a new label in L′. Algorithm 1 gives the combination label
transformation. The notations are described in Table 2. Here,
L′ is min D , 2 L , where 2 L can be calculated by
C0
n + C1

n +⋯ + Cn
n, D is the training dataset, and n denotes

the number of the single class labels. It should be noted that
we focus on the normal chronic diseases, and the number
of single diseases is less than 10. Table 3 describes the combi-
nation of labels from Table 1. After the above two steps, the
original multilabel classification problem is transformed into
a multiclass classification problem.

4.2. Pruned Datasets and Joint Decomposition. We design a
pruned dataset method to balance the infrequent label sets.

Input: D, L
Output: D′
1: //Initialization
2: for j = 1 to D do
3: for i = 1 to L do
4: Tji = 0
5: end for
6: end for
7: //Combination:
8: for j = 1 to D do
9: for i = 1 to L do
10: if Dj is associated with Label i then
11: Tji = 1
12: end if
13: end for
14: end for
15: return D′ // consisting of records (Dj, Tj)

Algorithm 1: Combination label transformation.

C

Original set of labels (L)

BA
A B C

ABCAB AC BC

New set of labels (L′)

Reassemble examples v2

𝜙

Figure 1: Enumeration for reassembling labels.

Table 2: Variable parameters denotation.

Notation Denotation

D The training dataset

L Set of class labels

D′ The dataset associated with the combination labels

Tji
The association for the jth record to ith label, the value is

0 or 1

li The ith label item in L

D(li) Datasets associated with class label li
Tv Threshold for infrequency records

PS Training sub datasets by decomposition

H
AHash functionH(k, val), where k is class labels and val

is the size of k set

S The similarity matrix

t The similarity threshold

k The number of label sets

LC The partition of label sets

Table 3: Example of label combination.

Physical records Combination labels

r1 acd

r2 ab

r3 bc

… …

rm bcd

Table 4: Example of label decomposition.

Physical records Combination labels Decomposition labels

r1 acd
ac
ad
cd
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First, we present a threshold to distinguish infrequent label
sets from frequent ones for class label records. The records
associated with one class label whose size is less than the
threshold are decomposed. Table 4 gives an example of
decomposition. Whenever a decomposition operation is exe-
cuted, the length of the associated combination class label is
decreased by one. Meanwhile, the size of all novel class labels
would be added to the size of old combination class label. The
decomposition is repeated iteratively until all records are fre-
quent, which is described in Algorithm 2, where variable
notations are listed in Table 2. Because the threshold would
impact the prediction result, it should be traded off between
the correctness and accuracy.

To solve the imbalance learning problem, a subset parti-
tion method is proposed based on new pruned training data-
sets. In this work, we present two different strategies. The first
one emphasizes the size balance of different class. According
to the size of each class label set, the whole training dataset is
divided into two or more subsets which are disjoint. The sub-
set partition is described as following. Given a training

dataset T, T = Xm, Ŷm
M
m=1, where Xm ∈ χ ⊂ Rn is the

input vector, χ is the set of training inputs, Ŷm ∈ Z ⊂ RK

is the desired output, Z is the set of desired outputs,
and M is the total number of training datasets. Here,
χj ∩ χk = ϕ,⋃Ni

j=1χj = χ, with j, k = 1, Ni, and j ≠ k. χi are
the new partition subsets, and Ni is constant, which is
determined manually according to all the size of class sets.

The second strategy for subset partition focuses on the
disjoint of multiclass labels. The idea aims to divide simi-
lar labels into different classifiers. First, we calculate the
similarity between any two labels. Given a similarity
threshold Ts, labels would be divided into different clus-
ters, where labels satisfy the criterion that the similarity
is less than the threshold in the same label cluster. An
example is given in Figure 2. There are five single class
labels to produce 32 multiclass labels. Based on the simi-
larity to perform the subset partition, which is presented
in Algorithm 3, 13 labels are formed at last. Here, the sim-
ilarity threshold is 1/2, which denotes the ratio of the
same label number and the maximal label number between
two labels.

At last, based on each partitioned training sub dataset,
a classifier is constructed separately. Then, it forms several
classifiers whose number equals the number of sub data-
sets. In the prediction, the voting mechanism is adopted
to determine the prediction result. The class label which
gains the highest prediction probability is the final predic-
tion class label.

4.3. Evaluation Metrics. The evaluation of models in multi-
label learning needs a special approach because the perfor-
mance over all labels should be taken into account. In this
work, Avg accuracy, precision, recall, and F1 metrics given
in (1) are used to evaluate performance of different classi-
fication models. Here TPi, TNi, FPi, and FNi are true post-
ive, true negative, false positive, and false negative,
respectively. The Avg accuracy gives the average per-class
effectiveness for one classifier. Precisionmicro denotes the
agreement of the data class labels predicted with those of
a classifier calculated from sums of prediction. Recallmicro
is the effectiveness of a classifier to identify class labels cal-
culated from sums of actual records. F1micro denotes rela-
tionships between the positive labels and those given by
a classifier based on sums of actual records. Precisionmacro
means an average per-class agreement of the data class
labels with those of a classifier given. Recallmacro is an
average per-class effectiveness of a classifier to identify
class labels. F1macro gives the relationships between the
positive labels and those given by a classifier based on a
per-class average. Given a confusion matrix, these metrics
can be computed using the following:

Input: D, L, Tv
Output: PS
1: function DECOMPOSEDATASETS D, L, Tv
2: H← INITIALIZE L, hash
3: m←MaxLen H k
4: Get L′where Len l′ =m
5: while Sizeof D l′ < Tv do
6: s← 1
7: for j = 1, j < L′ , j + + do
8: if Sizeof D lj < Tv then
9: H←DECOMPOSELABEL D, L′,m,H
10: end if
11: end for
12: m←MaxLen H k
13: Get L′where Len l =m
14: s + +
15: Tv ← sTv
16: end while
17: for k ∈H do
18: Partition sub-datasets by val(H.k) and create PS
19: end for
20: return PS
21: end function
22: function INITIALIZE D, L
23: for li ∈ L do
24: Sort li into descending order by the length of label

li
25: k ← li
26: val← Sizeof D li
27: Create HashTable hash k, val
28: end for
29: return hash
30: end function
31: function DECOMPOSELABEL D, L, n,Hash
32: for l ∈ L where Len l = n do
33: //where n is calculated by Cn−1

n
34: Decompose l into n labels
35: Insert new labels into H and update it
36: end for
37: for record dl ∈D l do
38: Copy dl n times for decomposition labels
39: Update Hash
40: end for
41: return Hash
42: end function

Algorithm 2: Decomposition of datasets.
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Avg accuracy =
〠l

i=1 TPi + TNi / TPi + FPi + TNi + FNi

l

Precisionmicro =
〠l

i=1TPi

〠l

i=1 TPi + FPi

Recallmicro =
〠l

i=1TPi

〠l

i=1 TPi + FNi

F1micro =
2PrecisionmicroRecallmicro
Precisionmicro + Recallmicro

Precisionmacro =
〠l

i=1TPi/ TPi + FPi

l

Recallmacro =
〠l

i=1TPi/ TPi + FNi

l

F1macro =
2PrecisionmacroRecallmacro
Precisionmacro + Recallmacro

1

5. Experiments

5.1. Datasets. The real datasets were provided by a medical
center. There are 110,300 records of anonymous examination
records which include 62 examination items consisting of the
basic physical examination items, blood routine examina-
tion, liver function test, as well as the diagnosis results
marked by the physicians. In this experiment, we focus on
6 normal chronic diseases. They are hypertension, diabetes,
fatty liver, cholecystitis, heart disease, and obesity.

We adopt label cardinality (LC) and label density (LD) to
describe the datasets. Label cardinality of dataset D, denoted
by LC(D), is the average number of labels of the records in D,
which is used to quantify the number of the alternative labels.
The label density of dataset D, denoted by LD (D), takes into
consideration the number of labels in the classification prob-
lem [9]. They are defined in (2), where D denotes the dataset
of the physical examination records, D is the size of the
dataset D, and Yi is the number of labels for the ith physical
record. L denotes the size of the label set L. Table 5

summarizes the training dataset. It includes the number of
records, the number of attributes, and the number of labels,
the label cardinality, and the label density. There are two col-
umns for the number of labels. Here, the number of single
labels is 6 and the number of combination labels is 64.

N, ab,
cd, ace,

bde

N, a, b, c,
d, e, abc,

ade

Label partition

N, ac, bd,
abe, bcd

N, ae,
abd, bce

N, acde

N,
abcde

N, ce,
abcd

N, de,
ace

N, de,
abce

N, abde

N, bcde
a,b,c,d,e

N, be,
acd

N, ad,
bc, cde

Figure 2: Example of label sets partition.

Input: L, t
Output: k, LC
1: function LABELSETSPARTITION L, t
2: S← INITSIMILAR L, S
3: k← 1
4: while L <> NULL do
5: for p = 1, p < L , p + + do
6: if n = 0 then
7: LCk ← lp
8: end if
9: n ← Sizeof LCk
10: for q = 1, q < n, q + + do
11: m← 0
12: if Spq > t then
13: m + +
14: end if
15: end for
16: if m == 0 then
17: LCk ← LCk⋃lp
18: end if
19: n + +
20: delete lp from L
21: end for
22: k + +
23: end while
24: return LC
25: end function
26: function INITSIMILAR L, S
27: for i = 1, i < L , i + + do
28: for j = 1, j < L , j + + do
29: Sij ← Sim Li, Lj
30: end for
31: end for
32: return S
33: end function

Algorithm 3: Label sets dividing algorithm.
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LC D =
1
D

〠
D

i=1
Yi

LD D =
1
D

〠
D

i=1

Yi

L

2

5.2. The Basic Classification Algorithms. In the experiments,
we use three basic classification algorithms, support vector
machines (SVM), random forest (RF), and C4.5, to construct
classifiers to evaluate the ELPPJD method and compare it
with other multilabel classification methods. These classifica-
tion algorithms are briefly described in this section.

Support vector machines (SVM) construct a hyperplane
for linear classification or set of hyperplanes in an infinite-
dimensional space for nonlinear classification. Suppose that
an input x can be mapped into some other space of different
high dimensionalities. Then, the maximum margin algo-
rithm can be used to construct a separating hyperplane in
the new feature space k xi, xj = ϕ xi · ϕ xj . The SVM learn-
ing algorithm finds a hyperplane (w, b) such that the quantity
γmin

i
yi <w, ϕ xi > −b is maximized, where <,> denotes

an inner product, the vector w has the same dimensionality
as ϕ, b is a real number, and γ is called the margin.

Random forest (RF) combines multiple individual tree
decisions to improve prediction accuracy. It was proposed
first by Leo Breiman and Adele Cutler [17]. RF consists of
multiple classification and regression trees (CART). For
every CART, the training datasets are sampled randomly
from the total training datasets with replacement, and fea-
tures are sampled randomly from the total features with-
out replacement. Assuming the total number of features
is M, then the number of sample features can be close
to M, 1/2 M, or 2 M. RF can be presented as follows:
h x, ϕk , k = 1,… , where ϕk are independent, identically
distributed random vectors, and each tree casts a unit vote
for the most popular class at input x.

C4.5 decision tree classification is an algorithm developed
by Ross Quinlan [18]. It builds decision trees from a set of
training datasets using the concept of information entropy.
At each node of the tree, C4.5 chooses the attribute of the
data that most effectively splits its set of samples into sub-
sets in one class or the other. The splitting criterion is the
normalized information gain. The attribute with the high-
est normalized information gain is chosen to make the
decision. The C4.5 algorithm then recurs on the smaller
subsets.

5.3. Experiment Setup. The preprocessing of original datasets
consists of data cleaning, integration, and transformation,
which are conducted by SQL query, MATLAB, and Python,
respectively. The experiment platform is based on a CentOS-

64 bits Intel (R) Xeon (R) CPU E5-2620 virtual machine with
4 processors and 64GB memory.

In ELPPJD method, we carry out pruning operation
based on the original 64 combination labels dataset and
53 labels are retained. Two subset partition strategies size
balanced (SB) and label similarity (LS) are deployed sepa-
rately. They are denoted by ELPPJD_SB and ELPPJD_LS
in the experimental outcome. ELPPJD_SB decomposes the
training dataset into 6 subsets, and ELPPJD_LS decomposes
it into 8 subsets. We compare ELPPJD with the two outstand-
ing multilabel classification methods named RAkEL and
HOMER [15] based on the original training dataset, which
includes 110,300 records and 64 combination labels. SVM,
RF, and C4.5 are used as the basic multiclass classification
algorithms. ELPPJD are carried out based on LIBSVM with
radial basis function (RFB). RAkEL runs at C4.5 classifier
based on MEKA. HOMER is executed based on MULAN
open source algorithms, where RF is the basic classification
algorithm. The results of experiments are given in Figure 3,
Tables 6–10.

5.4. Results and Discussion. Figure 3 shows the selection of the
optimal parameters for training models in LIBSVM. Two
hyperparameters, regularization parameter c and a kernel
parameter g, are tuned by a two-step grid search. First, it is
a coarse search. log2c ∈ −2,…, 15 and log2g ∈ −10,…, 2
are the range of variable parameters with a step of one. There
are a total number of 234 combinations of c and g pairs tuned.
An optimal pair (c, g) is obtained whose value is (15, −9).
Second, a fine grid searching is conducted around (c, g).
log2c ∈ 14,…, 15 and log2g ∈ −10,…, −8 with a step of
0.2. Lastly, the final optimal hyperparameter pair (15, −9) is
given and the most accuracy rate is 84.734%. Figures 3(a)
and 3(c) give the comparison of ELPPJD_SB and
ELPPJD_LS. The results show that ELPPJD_LS gives higher
accuracy rate. Table 10 gives further description.

In the experiments, the confusion matrices are used to
evaluate the performance of ELPPJD. Based on the result
of each prediction, we obtain confusion matrices. When we
use ELPPJD_LS, the original physical dataset is decomposed
into 8 sub training datasets. Table 7 shows one ELPPJD_LS
outcome, where the sub training dataset consists of 10,828
records and 7 multilabel classes. Label set L = 001011, 0011
00, 010010, 100001, 100110, 111000, 111111 . We evaluate
the performance of ELPPJD_LS using the evaluation metrics
presented previously in the subsection of evaluation mea-
sures, which is given in Table 10.

Random forests as the basic classifier are used to evaluate
RAkEL method. We tune the optimal parameters to trade off
the performance and resource costs in the RF algorithm. We
consider two parameters: max features and n_estimators.
Max features denotes the maximum number of features

Table 5: Description of the multilabel training dataset in the experiments.

Data sets
Records

Attributes Single labels Combination labels Label density Label cardinality
Training Test

Physical records 99,270 11,030 62 6 64 0.336 2.015

6 Journal of Healthcare Engineering



where RF is allowed to try in an individual tree. n_estimators
represents the number of trees we want to build. In this
experiment, we run random forest on one of the sub training
datasets to select the optimal parameters. The averages of
accuracy, out of bag errors and time cost are obtained by
changing the numbers of selected features and trees.
Table 6 shows that accuracy improves with the increase of
the number of trees. However, the time cost grows with the
increase of selected features. We consider the accuracy as
the primary goal, so the tuple of (15, 80) is chosen as the opti-
mal parameters, which means each RF classifier selects ran-
domly 15 random features and produces 80 trees.

Multilabel classification method RAkEL and HOMER
are used to compare with the proposed ELPPJD. In the
experiments, RAkEL and HOMER run at the original physi-
cal dataset, which includes 110,300 records and 64 multilabel
classes. The number of single labels is 6. The basic classifier is
C4.5 for RAkEL and RF for HOMER. The parameters are
described as following: We tune parameter pair (k,m) in

RAkEL, where k is the number of selected single labels and
m is the number of combination labels. We select three pairs
which consist of (3,15), (4,10), and (5,4). Here, when 3 single
labels are selected randomly from the label set, the total num-
ber of label combination is 20. We select 15 combination
labels to form the training dataset and so on for other
two (k, m) pairs. Table 8 gives the outcomes with respect
to different parameter pairs denoted by RAkEL_k3_m15,
RAkEL_k4_m10, and RAkEL_k5_m4. It shows that
RAkEL_k3_m15 gives better performance, and it is chosen
to compare with ELPPJD in Table 10. In HOMER, param-
eter k denotes the number of child nodes on the first layer.
k < L , and here the size of single label set L = 6. The
basic classifier is RF, where max features and n_estimators
are set by 15 and 80. The comparison of different k is pre-
sented in Table 9.

Table 10 shows the performance comparison of ELP-
PJD with RAkEL and HOMER based on our training
dataset for disease risk prediction. First, the results show

Best log2 (C) = 15.0
C = 32768.0 Gamma = 0.001953125

log2 (Gamma) = ‒9.0 Accuracy = 84.734%
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Figure 3: Optimal hyperparameters selected in LIBSVM.
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that ELPPJD_LS has better performance than ELPPJD_SB.
They all adopt pruning and decomposition method to
solve the imbalance problem. The difference between
ELPPJD_LS and ELPPJD_SB is that the former takes the
similarity between labels into account to decompose the
training dataset. Second, ELPPJD_LS gives outstanding
performance at almost all the metrics than RAkEL and

HOMER. The average accuracy reaches 88.59%, which is
a good result in multilabel classification.

6. Conclusion

We developed an Ensemble Label Power-set Pruned datasets
Joint Decomposition (ELPPJD) method to solve the

Table 6: Random forest classifier parameter tuning on partition training subsets.

NumFeatures NumTrees Accuracy Out of bag error Time out(s)

10 30 0.9116 0.1483 2.22

10 40 0.9118 0.1473 2.94

10 50 0.9126 0.1466 3.78

10 60 0.9136 0.146 4.51

15 30 0.9175 0.1394 2.88

15 40 0.9167 0.1387 3.88

15 50 0.9185 0.138 4.99

15 60 0.9185 0.1377 5.84

15 70 0.9195 0.1373 6.84

15 80 0.9197 0.1373 7.83

15 100 0.9185 0.1369 9.99

20 30 0.9150 0.137 3.69

20 50 0.9189 0.1354 6.25

20 70 0.9186 0.1346 8.76

30 40 0.9173 0.1347 7.27

30 60 0.9170 0.1342 10.93

40 40 0.9190 0.1343 9.09

40 50 0.9195 0.1338 11.36

40 60 0.9202 0.1334 13.84

Table 7: Confusion matrix of ELPPJD_LS based on LIBSVM.

Prediction
001011 001100 010010 100,001 100,110 111,000 111,111

Real class

001011 4048 105 61 127 4 2 89

001100 24 2622 167 8 79 66 33

010010 22 97 407 2 5 30 7

100,001 63 3 7 1038 31 4 36

100,110 0 30 16 7 707 19 0

111,000 0 22 26 3 10 374 5

111,111 15 0 6 19 1 6 405

Table 8: RAkEL parameters tuning.

Metrics RAkEL_k3_m15 RAkEL_k4_m10 RAkEL_k5_m4

Avg accuracy 0.583 0.484 0.547

Precisionmicro 0.543 0.544 0.577

Recallmicro NaN NaN NaN

F1micro 0.744 0.689 0.712

Precisionmacro NaN NaN NaN

Recallmacro NaN NaN NaN

F1macro 0.575 0.578 0.558
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multilabel classification problem for the disease risk predic-
tion. First, we transform the multilabel classification problem
into a multiclass classification problem. Then, we propose the
pruned datasets and joint decomposition methods to deal
with the imbalance learning problem. Two strategies are
designed to decompose the training dataset. Experiments
are conducted to evaluate the performance of the ELPPJD
method. We adopt the 10-fold cross-validation and the met-
rics consisting of average accuracy, precision, recall, and F-
measure. The training dataset includes 62 exam items and
110,300 anonymous patients, 6 types of single diseases, and
64 combination diseases. We contrast two decomposition
strategies in ELPPJD. We also compare ELPPJD with two
multilabel classification methods RAkEL and HOMER.
Results from the experiments show that ELPPJD_LS not only
gives better performance than ELPPJDJSB but also outper-
forms the other two widely used multilabel methods.

7. Future Works

For chronic disease prediction, we focus on the following
problems in the future work. First, we will develop intelligent
mobile applications to provide the service of personalized
health risk prediction based on this work. Second, more
and more chronic patients use intelligent wearable sensor
equipments to monitor the physiological signals; we will col-
lect and analyze the stream data from wearable sensors in real
time to make a more accurate health risk assessment. Third,
we will apply the result in this work to develop the personal-
ized disease risk prediction models.
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