25 research outputs found

    Genome-Wide Analysis of the SNARE Family in Cultivated Peanut (<i>Arachis hypogaea</i> L.) Reveals That Some Members Are Involved in Stress Responses

    No full text
    The superfamily of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediates membrane fusion during vesicular transport between endosomes and the plasma membrane in eukaryotic cells, playing a vital role in plant development and responses to biotic and abiotic stresses. Peanut (Arachis hypogaea L.) is a major oilseed crop worldwide that produces pods below ground, which is rare in flowering plants. To date, however, there has been no systematic study of SNARE family proteins in peanut. In this study, we identified 129 putative SNARE genes from cultivated peanut (A. hypogaea) and 127 from wild peanut (63 from Arachis duranensis, 64 from Arachis ipaensis). We sorted the encoded proteins into five subgroups (Qa-, Qb-, Qc-, Qb+c- and R-SNARE) based on their phylogenetic relationships with Arabidopsis SNAREs. The genes were unevenly distributed on all 20 chromosomes, exhibiting a high rate of homolog retention from their two ancestors. We identified cis-acting elements associated with development, biotic and abiotic stresses in the promoters of peanut SNARE genes. Transcriptomic data showed that expression of SNARE genes is tissue-specific and stress inducible. We hypothesize that AhVTI13b plays an important role in the storage of lipid proteins, while AhSYP122a, AhSNAP33a and AhVAMP721a might play an important role in development and stress responses. Furthermore, we showed that three AhSNARE genes (AhSYP122a, AhSNAP33a and AhVAMP721) enhance cold and NaCl tolerance in yeast (Saccharomyces cerevisiae), especially AhSNAP33a. This systematic study provides valuable information about the functional characteristics of AhSNARE genes in the development and regulation of abiotic stress responses in peanut

    Current Understanding of Role of Vesicular Transport in Salt Secretion by Salt Glands in Recretohalophytes

    No full text
    Soil salinization is a serious and growing problem around the world. Some plants, recognized as the recretohalophytes, can normally grow on saline–alkali soil without adverse effects by secreting excessive salt out of the body. The elucidation of the salt secretion process is of great significance for understanding the salt tolerance mechanism adopted by the recretohalophytes. Between the 1950s and the 1970s, three hypotheses, including the osmotic potential hypothesis, the transfer system similar to liquid flow in animals, and vesicle-mediated exocytosis, were proposed to explain the salt secretion process of plant salt glands. More recently, increasing evidence has indicated that vesicular transport plays vital roles in salt secretion of recretohalophytes. Here, we summarize recent findings, especially regarding the molecular evidence on the functional roles of vesicular trafficking in the salt secretion process of plant salt glands. A model of salt secretion in salt gland is also proposed

    Clinical and genetic characteristics of Chinese patients with familial or sporadic pediatric cataract

    No full text
    Abstract Background Pediatric cataract is a clinically and genetically heterogeneous disease which is a significant cause of lifelong visual impairment and treatable blindness. Our study aims to investigate the genotype spectrum in a group of Chinese patients with pediatric cataract. Methods We enrolled 39 families with pediatric cataract from October 2015 to April 2016. DNA samples of the probands were analyzed by target next-generation sequencing. Variants were validated using Sanger sequencing in the probands and available family members. Results In our cohort of 39 cases with different types of pediatric cataract, 23 cases were found to harbor putative pathogenic variants in 15 genes: CRYAA, CRYBA1, CRYBA4, CRYBB1, CRYGC, CRYGD, MIP, GCNT2, IARS2, NHS, BCOR, BFSP2, FYCO1, MAF, and PAX6. The mutation detection rates in the familial and sporadic cases were 75 and 47.8%, respectively. Of the 23 causative variants, over half were novel. Conclusions This is a rare report of systematic mutation screening analysis of pediatric cataract in a comparably large cohort of Chinese patients. Our observations enrich the mutation spectrum of pediatric cataract. Next-generation sequencing provides significant diagnostic information for pediatric cataract cases, especially when considering sporadic and subtle syndromal cases

    Modulation of Microbiota-Gut-Brain Axis by Berberine Resulting in Improved Metabolic Status in High-Fat Diet-Fed Rats

    No full text
    Objective: To investigate whether or not berberine could improve metabolic status of high-fat-fed rats through modulation of microbiota-gut-brain axis. Methods: Berberine was administered on high-fat-fed Sprague-Dawley rats. Brain-gut hormones were detected, and changes of gut microbiota were analyzed by 16S rRNA gene sequencing. Results: Berberine could reduce weight gain and lipolysis in the high-fat diet-fed group. Moreover, trends of ameliorated insulin resistance and decreased endogenous glucose production were observed. In addition, the microbiota-gut-brain axis was found to be modulated, including structural and diversity changes of microbiota, elevated serum glucagon-like peptide-1 and neuropeptide Y level, decreased orexin A level, up-regulated glucagon-like peptide-1 receptor mRNA level as well as ultra-structural improvement of the hypothalamus. Conclusion: Taken together, our findings suggest that berberine improved metabolic disorders induced by high-fat diet through modulation of the microbiota-gut-brain axis

    Molecular analysis of inherited cardiomyopathy using next generation semiconductor sequencing technologies

    No full text
    Abstract Background Cardiomyopathies are the most common clinical and genetic heterogeneity cardiac diseases, and genetic contribution in particular plays a major role in patients with primary cardiomyopathies. The aim of this study is to investigate cases of inherited cardiomyopathy (IC) for potential disease-causing mutations in 64 genes reported to be associated with IC. Methods A total of 110 independent cases or families diagnosed with various primary cardiomyopathies, including hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, left ventricular non-compaction, and undefined cardiomyopathy, were collected after informed consent. A custom designed panel, including 64 genes, was screened using next generation sequencing on the Ion Torrent PGM platform. The best candidate disease-causing variants were verified by Sanger sequencing. Results A total of 78 variants in 73 patients were identified. After excluding the variants predicted to be benign and VUS, 26 pathogenic or likely pathogenic variants were verified in 26 probands (23.6%), including a homozygous variant in the SLC25A4 gene. Of these variants, 15 have been reported in the Human Gene Mutation Database or ClinVar database, while 11 are novel. The majority of variants were observed in the MYH7 (8/26) and MYBPC3 (6/26) gene. Titin (TTN) truncating mutations account for 13% in our dilated cardiomyopathy cases (3/23). Conclusions This study provides an overview of the genetic aberrations in this cohort of Chinese IC patients and demonstrates the power of next generation sequencing in IC. Genetic results can provide precise clinical diagnosis and guidance regarding medical care for some individuals

    Genetic Analysis and Follow-Up of 25 Neonatal Diabetes Mellitus Patients in China

    No full text
    Aims. To study the clinical features, genetic etiology, and the correlation between phenotype and genotype of neonatal diabetes mellitus (NDM) in Chinese patients. Methods. We reviewed the medical records of 25 NDM patients along with their follow-up details. Molecular genetic analysis was performed. We compared the HbA1c levels between PNDM group and infantile-onset T1DM patients. Results. Of 25 NDM patients, 18 (72.0%) were PNDM and 7 (28.0%) were TNDM. Among 18 PNDM cases, 6 (33.3%) had known KATP channel mutations (KATP-PNDM). There were six non-KATP mutations, five novel mutations, including INS, EIF2AK3 (n=2), GLIS3, and SLC19A2, one known EIF2AK3 mutation. There are two ABCC8 mutations in TNDM cases and one paternal UPD6q24. Five of the six KATP-PNDM patients were tried for glyburide transition, and 3 were successfully switched to glyburide. Mean HbA1c of PNDM was not significantly different from infantile onset T1DM (7.2% versus 7.4%, P=0.41). Conclusion. PNDM accounted for 72% of NDM patients. About one-third of PNDM and TNDM patients had KATP mutations. The genetic etiology could be determined in 50% of PNDM and 43% of TNDM cases. PNDM patients achieved good glycemic control with insulin or glyburide therapy. The etiology of NDM suggests polygenic inheritance
    corecore