97 research outputs found

    Application of Least Squares Support Vector Regression with Regrouping Particle Swarm Optimzation

    Get PDF
    Least Squares Support Vector Regression (LSSVR) is a powerful machine learning tool. The performance of LSSVR is not only directly linked to the proper selection of its hyper-parameters, but also to the proper feature selection of the targeted dataset. In time series forecasting, features selection can be viewed as selecting the numbers of past data points. It became important for selecting a good combination of both these parameters and features, if we want to do any meaningful short-term forecasting for time series data. The existing parameter selection methods employ many optimizing techniques that range from grid search to neural networks and particle swarm optimization, but they all left the feature selection of the series to users. A novel method is proposed here to select both LSSVR parameters and the features of the time series at the same time. The real world data used in this study demonstrate the proposed method achieves better performance in terms of recursive short-term forecasting, when compared to existing standard PSO and grid search methods that focus on hyper-parameters selection and leaves the feature selection to Average Mutual Information (AMI).Computer Science Departmen

    Reservoir properties and hydrocarbon enrichment law of Chang 1 oil layer group in Yanchang Formation, Wanhua area, Ordos Basin

    Get PDF
    Evaluation of tight oil reservoir properties is of great significance to the exploration of oil and gas in tight reservoirs. The Chang 1 Member of the Yanchang Formation in the Wanhua Area, Ordos Basin is a new exploration stratum for tight sandstone oil. The lack of understanding of reservoir characteristics and crude oil enrichment rules has seriously restricted the efficient development of oil and gas resources in this stratum. In this study, the reservoir characteristics of the Chang 1 Member in the Wanhua area and the effects of superimposed sand bodies, structures and paleogeomorphology on accumulation of hydrocarbons were systematically studied. The Chang 1 sandstone is a typical ultra-low porosity-ultra-low permeability reservoir, and it has experienced destructive diagenesis of mechanical compaction, pressure solution and cementation, and constructive diagenesis of dissolution. Strong pressure solution caused the secondary enlargement of quartz and feldspar and the formation of patchy dense mosaic structures. The target layer has experienced argillaceous, siliceous and carbonate cementations. Moreover, the sandstone reservoir in the Chang 1 Member also experienced strong dissolution, and it is the main factor for the formation of secondary pores and the improvement of reservoir physical properties. The study also found that the main types of pores in the Chang 1 Member are intergranular dissolved pores and remaining intergranular pores. Superimposed sand bodies, nose-shaped uplifts, dominant facies and eroded paleo-highlands have significant effects on the hydrocarbon accumulation. Based on this study, it was found that the migration and accumulation mode of hydrocarbons in the Chang 1 reservoir belongs to the ladder-like climbing migration + structural ridge accumulation type. In addition, sand body thickness is an important controlling factor for the hydrocarbon accumulation. At present, the discovered crude oil in the Chang 1 Member is always distributed in the areas with thick sand bodies (>20Β m), and most of the sand bodies have a thickness in the range of 25–40Β m, and the effective thickness is in the range of 2–6Β m. In addition, the eroded highlands are the highest topographic units, they are favorable areas for the large-scale accumulation of oil and gas

    A Quantitative Rating System for Pollutant Emission Reduction of Asphalt Mixture

    Get PDF
    This study presents a comprehensive pollutant reduction rating system for hot mix asphalt (HMA) with three Level I indices and ten Level II indices, covering various aspects in HMA pollutant emissions, energy consumption, and exhausts from construction equipment. The pollutant emission reduction effects are investigated not only in the laboratory for modified asphalt mixtures with various mixture gradation and binder types but also in the field for several warm mix asphalt (WMA) projects. Furthermore, energy consumption and emission data during pavement construction are obtained from 58 in situ highway projects in 10 provinces of China. Based on the hierarchical clustering method and Bayesian discriminant analysis, individual ranking systems are developed to quantify pollutant emission reduction effects and energy consumption. Subsequently, a comprehensive reduction rating system is established based on the analytic hierarchy process and approximation methods. A case study is demonstrated to implement the proposed system for the assessment of emission reduction effects

    Emission Reduction Performance of Modified Hot Mix Asphalt Mixtures

    Get PDF
    Three novel asphalt modifiers with pollutant emission reduction effects and new emissions measurement equipment compatible with several preexisting asphalt production systems are developed in this paper. The effects of various modifier, asphalt binder type, and gradation of hot mix asphalt (HMA) on pollutant emissions are evaluated in the lab through a comprehensive experimental design. Furthermore, road performances are monitored to evaluate the emissions reduction of modified HMA mixture for production. With increasing modifier content, the emissions reduction performance is improved markedly, with maximum reduction of 70.5%. However, the impact of modifier content on pollutant emissions reduction tends to be insignificant for dosages greater than 20% of the initial asphalt weight. Changes in asphalt type and asphalt mix gradation are found to moderately impact the emissions reduction effect. Finally, the mechanisms of emissions reduction are investigated, primarily attribute to their physical and chemical adsorption and pollutant reductive degradation characteristics

    Evaluation of the Impact of Argo Data on Ocean Reanalysis in the Pacific Region

    Get PDF
    Observing System Simulation Experiments (OSSEs) have been conducted to evaluate the effect of Argo data assimilation on ocean reanalysis in the Pacific region. The β€œtruth” is obtained from a 5-year model integration from 2003 to 2007 based on the MIT general circulation model with the truly varying atmospheric forcing. The β€œobservations” are the projections of the truth onto the observational network including ocean station data, CTD, and various BTs and Argo, by adding white noise to simulate observational errors. The data assimilation method employed is a sequential three-dimensional variational (3D-Var) scheme within a multigrid framework. Results show the interannual variability of temperature, salinity, and current fields can be reconstructed fairly well. The spread of temperature anomalies in the tropical Pacific region is also able to be reflected accurately when Argo data is assimilated, which may provide a reliable initial field for the forecast of temperature and currents for the subsurface in the tropical Pacific region. The adjustment of salinity by using T-S relationship is vital in the tropical Pacific region. However, the adjustment of salinity is almost meaningless in the northwest Pacific if Argo data is included during the reanalysis

    Isolation and identification of antagonistic Bacillus amyloliquefaciens HSE-12 and its effects on peanut growth and rhizosphere microbial community

    Get PDF
    The HSE-12 strain isolated from peanut rhizosphere soil was identified as Bacillus amyloliquefaciens by observation of phenotypic characteristics, physiological and biochemical tests, 16S rDNA and gyrB gene sequencing. In vitro experiments showed that the strain possessed biocontrol activity against a variety of pathogens including Sclerotium rolfsii. The strain has the ability to produce hydrolytic enzymes, as well as volatile organic compounds with antagonistic and probiotic effects such as ethyleneglycol and 2,3-butanediol. In addition, HSE-12 showed potassium solubilizing (10.54 ± 0.19 mg/L), phosphorus solubilization (168.34 ± 8.06 mg/L) and nitrogen fixation (17.35 ± 2.34 mg/g) abilities, and was able to secrete siderophores [(Ar-A)/Ar Γ— 100%: 56%] which promoted plant growth. After inoculating peanut with HSE-12, the available phosphorus content in rhizosphere soil increased by 27%, urease activity increased by 43%, catalase activity increased by 70% and sucrase activity increased by 50% (p < 0.05). The dry weight, fresh weight and the height of the first pair of lateral branches of peanuts increased by 24.7, 41.9, and 36.4%, respectively, compared with uninoculated peanuts. In addition, compared with the blank control, it increased the diversity and richness of peanut rhizosphere bacteria and changed the community structure of bacteria and fungi. The relative abundance of beneficial microorganisms such as Sphingomonas, Arthrobacter, RB41, and Micromonospora in rhizosphere soil was increased, while the relative abundance of pathogenic microorganisms such as Aspergillus, Neocosmospora, and Rhizoctonia was decreased

    A Better Anti-Diabetic Recombinant Human Fibroblast Growth Factor 21 (rhFGF21) Modified with Polyethylene Glycol

    Get PDF
    As one of fibroblast growth factor (FGF) family members, FGF21 has been extensively investigated for its potential as a drug candidate to combat metabolic diseases. In the present study, recombinant human FGF21 (rhFGF21) was modified with polyethylene glycol (PEGylation) in order to increase its in vivo biostabilities and therapeutic potency. At N-terminal residue rhFGF21 was site-selectively PEGylated with mPEG20 kDa-butyraldehyde. The PEGylated rhFGF21 was purified to near homogeneity by Q Sepharose anion-exchange chromatography. The general structural and biochemical features as well as anti-diabetic effects of PEGylated rhFGF21 in a type 2 diabetic rat model were evaluated. By N-terminal sequencing and MALDI-TOF mass spectrometry, we confirmed that PEG molecule was conjugated only to the N-terminus of rhFGF21. The mono-PEGylated rhFGF21 retained the secondary structure, consistent with the native rhFGF21, but its biostabilities, including the resistance to physiological temperature and trypsinization, were significantly enhanced. The in vivo immunogenicity of PEGylated rhFGF21 was significantly decreased, and in vivo half-life time was significantly elongated. Compared to the native form, the PEGylated rhFGF21 had a similar capacity of stimulating glucose uptake in 3T3-L1 cells in vitro, but afforded a significantly long effect on reducing blood glucose and triglyceride levels in the type 2 diabetic animals. These results suggest that the PEGylated rhFGF21 is a better and more effective anti-diabetic drug candidate than the native rhFGF21 currently available. Therefore, the PEGylated rhFGF21 may be potentially applied in clinics to improve the metabolic syndrome for type 2 diabetic patients

    A Novel Solid-Phase Site-Specific PEGylation Enhances the In Vitro and In Vivo Biostabilty of Recombinant Human Keratinocyte Growth Factor 1

    Get PDF
    Keratinocyte growth factor 1 (KGF-1) has proven useful in the treatment of pathologies associated with dermal adnexae, liver, lung, and the gastrointestinal tract diseases. However, poor stability and short plasma half-life of the protein have restricted its therapeutic applications. While it is possible to improve the stability and extend the circulating half-life of recombinant human KGF-1 (rhKGF-1) using solution-phase PEGylation, such preparations have heterogeneous structures and often low specific activities due to multiple and/or uncontrolled PEGylation. In the present study, a novel solid-phase PEGylation strategy was employed to produce homogenous mono-PEGylated rhKGF-1. RhKGF-1 protein was immobilized on a Heparin-Sepharose column and then a site-selective PEGylation reaction was carried out by a reductive alkylation at the N-terminal amino acid of the protein. The mono-PEGylated rhKGF-1, which accounted for over 40% of the total rhKGF-1 used in the PEGylation reaction, was purified to homogeneity by SP Sepharose ion-exchange chromatography. Our biophysical and biochemical studies demonstrated that the solid-phase PEGylation significantly enhanced the in vitro and in vivo biostability without affecting the over all structure of the protein. Furthermore, pharmacokinetic analysis showed that modified rhKGF-1 had considerably longer plasma half-life than its intact counterpart. Our cell-based analysis showed that, similar to rhKGF-1, PEGylated rhKGF-1 induced proliferation in NIH 3T3 cells through the activation of MAPK/Erk pathway. Notably, PEGylated rhKGF-1 exhibited a greater hepatoprotection against CCl4-induced injury in rats compared to rhKGF-1

    Emission Reduction Performance of Modified Hot Mix Asphalt Mixtures

    No full text
    Three novel asphalt modifiers with pollutant emission reduction effects and new emissions measurement equipment compatible with several preexisting asphalt production systems are developed in this paper. The effects of various modifier, asphalt binder type, and gradation of hot mix asphalt (HMA) on pollutant emissions are evaluated in the lab through a comprehensive experimental design. Furthermore, road performances are monitored to evaluate the emissions reduction of modified HMA mixture for production. With increasing modifier content, the emissions reduction performance is improved markedly, with maximum reduction of 70.5%. However, the impact of modifier content on pollutant emissions reduction tends to be insignificant for dosages greater than 20% of the initial asphalt weight. Changes in asphalt type and asphalt mix gradation are found to moderately impact the emissions reduction effect. Finally, the mechanisms of emissions reduction are investigated, primarily attribute to their physical and chemical adsorption and pollutant reductive degradation characteristics
    • …
    corecore