60 research outputs found

    Tungsten Nanoparticles Accelerate Polysulfides Conversion: A Viable Route toward Stable Room-Temperature Sodium–Sulfur Batteries

    Get PDF
    Room-temperature sodium–sulfur (RT Na–S) batteries are arousing great interest in recent years. Their practical applications, however, are hindered by several intrinsic problems, such as the sluggish kinetic, shuttle effect, and the incomplete conversion of sodium polysulfides (NaPSs). Here a sulfur host material that is based on tungsten nanoparticles embedded in nitrogen-doped graphene is reported. The incorporation of tungsten nanoparticles significantly accelerates the polysulfides conversion (especially the reduction of Na2S4 to Na2S, which contributes to 75% of the full capacity) and completely suppresses the shuttle effect, en route to a fully reversible reaction of NaPSs. With a host weight ratio of only 9.1% (about 3–6 times lower than that in recent reports), the cathode shows unprecedented electrochemical performances even at high sulfur mass loadings. The experimental findings, which are corroborated by the first-principles calculations, highlight the so far unexplored role of tungsten nanoparticles in sulfur hosts, thus pointing to a viable route toward stable Na–S batteries at room temperatures

    Reducing myocardial infarction by combination of irisin and Dendrobium nobile Lindl through inhibiting nod-like receptor protein-3-related pyroptosis and activating PINK1/Parkin-mitophagy during aging

    No full text
    Aging, a crucial risk factor for ischemic heart disease, has negative impacts on cardioprotective mechanisms. As such, there is still an unmet requirement to explore potential therapies for improving the outcomes of myocardial ischemia/reperfusion (IR) injury in elderly subjects. Here, we aimed to confirm the cardioprotective function of irisin/Dendrobium nobile Lindl (DNL) combination therapy against myocardial IR injury in aged rats, with a focus on the involvement of pyroptosis and mitophagy. Male aged Wistar rats (22–24 months old, 400–450 g; n = 54) underwent myocardial IR or sham surgery. Before IR operation, rats were pretreated with irisin (0.5 mg/kg, intraperitoneally) and/or DNL (80 mg/kg, orally) for 1 or 4 weeks, respectively, at corresponding groups. Cardiac function, lactate dehydrogenase (LDH) and cardiac-specific isoform of troponin-I (cTn-I) levels, the expression of proteins involved in pyroptosis (nod-like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein, c-caspase-1, and GSDMD-N) and mitophagy (PINK1 and Parkin), and pro-inflammatory cytokines levels were evaluated after 24 h of reperfusion. Irisin/DNL combined therapy significantly restored cardiac function and decreased LDH and cTn-I levels. It also downregulated pyroptosis-related proteins, upregulated PINK1 and Parkin, and decreased pro-inflammatory cytokines secretion. Pretreatment with Mdivi-1, as mitophagy inhibitor, abolished the cardioprotective action of dual therapy. This study revealed the cardioprotective effects of irisin/DNL combination therapy against IR-induced myocardial injury in aged rats, and also showed that the mechanism might be associated with suppression of NLRP3-related pyroptosis through enhancing the activity of the PINK1/Parkin mitophagy. This combination therapy is worthy of further detailed studies due to its potential to alleviate myocardial IR injury upon aging

    Control on sediment resuspension by activated red mud

    No full text
    The present paper mainly studies the adsorption properties of red mud on ammonian and phosphate as well as the control on sediment resuspension. The results show that, after acidfication, the removal rate of phosphate rose from 34.0% to 83.1% with the red mud concentration of 1 g/L. Furthermore, red mud can be quickly settled to the bottom, and calcium sulfate(CaS0(4)) generated by acidification react with tricalcium aluminate(3CaO center dot Al2O3) or activated calcium hydroxide and aluminum hydroxide in the red mud and generate cement bacillus(3CaO center dot Al2O3 center dot 3CaS0(4)), which can grow on the surface of red mud particles forming an isolation layer to inhibit sediment suspension

    Induction of Viable but Nonculturable State in Rhodococcus and Transcriptome Analysis Using RNA-seq.

    No full text
    Viable but nonculturable (VBNC) bacteria, which maintain the viability with loss of culturability, universally exist in contaminated and non-contaminated environments. In this study, two strains, Rhodococcus sp. TG13 and TN3, which were isolated from PCB-contaminated sediment and non-contaminated sediment respectively, were investigated under low temperature and oligotrophic conditions. The results indicated that the two strains TG13 and TN3 could enter into the VBNC state with different incubation times, and could recover culturability by reversal of unfavourable factors and addition of resuscitation-promoting factor (Rpf), respectively. Furthermore, the gene expression variations in the VBNC response were clarified by Illumina high throughput RNA-sequencing. Genome-wide transcriptional analysis demonstrated that up-regulated genes in the VBNC cells of the strain TG13 related to protein modification, ATP accumulation and RNA polymerase, while all differentially expressed genes (DEGs) in the VBNC cells of the strain TN3 were down-regulated. However, the down-regulated genes in both the two strains mainly encoded NADH dehydrogenase subunit, catalase, oxidoreductase, which further verified that cold-induced loss of ability to defend oxidative stress may play an important role in induction of the VBNC state. This study further verified that the molecular mechanisms underlying the VBNC state varied with various bacterial species. Study on the VBNC state of non-pathogenic bacteria will provide new insights into the limitation of environmental micro-bioremediation and the cultivation of unculturable species

    A combined application of different engineering techniques to remediate a heavily polluted river

    No full text
    River pollution is becoming a serious problem worldwide. A field-scale experiment was undertaken to remediate a heavily polluted river using a combined engineering approach of aeration, microorganisms, biological aerated filtration, artificial biofilms and ecological floating beds. Prior to remediation, the river water was black, anoxic and highly sulfidic. With remediation, the chemical oxygen demand decreased from similar to 250 to similar to 50 mg L-1, NH4+-N decreased from similar to 27 to similar to 4 mg L-1, sulfide decreased from similar to 3 to similar to 0.3 mg L-1, and total suspended solids decreased from similar to 270 to similar to 40 mg L-1. At the same time, dissolved oxygen increased from similar to 0.1 to similar to 3.5 mg L-1, and water clarity increased from similar to 6 to similar to 40 cm. Furthermore, the unpleasant odor emanating from the polluted river was also stopped, and local farmers have begun using the water for irrigation. This field-scale experiment thus indicates the potential usefulness of this combined engineering approach to remediate heavily polluted rivers. &nbsp;</div

    Analysis of energy consumption prediction for office buildings based on GA-BP and BP algorithm

    No full text
    To gain building energy consumption information during the design phase, the variance analysis to identify significant factors affecting energy consumption in China cold-region office buildings are carried out in this study. Key factors are selected, and prediction models for energy consumption in cold-region office buildings are established using BP and GA-BP algorithms. Three prediction model evaluation indexes are introduced to evaluate the prediction accuracy of the models. The results show that the maximum RMSE of the BP neural network prediction model is 0.498, and the maximum MAPE is 0.797%. Furthermore, the GA algorithm is used to optimize the BP neural network, resulting in a prediction model with a maximum RMSE of 0.359 and a maximum MAPE of 0.289%. The prediction accuracy of the GA-BP algorithm is better than that of the BP algorithm

    Simultaneous Recognition and Separation of Organic Isomers Via Cooperative Control of Pore‐Inside and Pore‐Outside Interactions

    No full text
    Abstract Despite the desirability of organic isomer recognition and separation, current strategies are expensive and complicated. Here, a simple strategy for simultaneously recognizing and separating organic isomers using pillararene‐based charge‐transfer cocrystals through the cooperative control of pore‐inside and pore‐outside intermolecular interactions is presented. This strategy is illustrated using 1‐bromobutane (1‐BBU), which is often produced as an isomeric mixture with 2‐bromobutane (2‐BBU). According to its structure, perethylated pillar[5]arene (EtP5) and 3,5‐dinitrobenzonitrile (DNB) are strategically chosen as a donor and an acceptor. As a result, their cocrystal exhibited stronger pore‐inside interactions and much weaker pore‐outside interactions with 1‐BBU than with 2‐BBU. Consequently, nearly 100% 1‐BBU selectivity is achieved in two‐component mixtures, even in those containing trace 1‐BBU (1%), whereas free EtP5 only achieved 89.80% selectivity. The preference for linear bromoalkanes is retained in 1‐bromopentane/3‐bromopentane and 1‐bromohexane/2‐bromohexane mixtures, demonstrating the generality of this strategy. Selective adsorption of linear bromoalkanes induced a naked‐eye‐detectable color change from red to white. Moreover, the cocrystal are used over multiple cycles without losing selectivity

    Ginseng saponin metabolite 20(S)-protopanaxadiol relieves pulmonary fibrosis by multiple-targets signaling pathways

    No full text
    Background: Panax ginseng Meyer is a representative Chinese herbal medicine with antioxidant and anti-inflammatory activity. 20(S)-Protopanaxadiol (PPD) has been isolated from ginseng and shown to have promising pharmacological activities. However, effects of PDD on pulmonary fibrosis (PF) have not been reported. We hypothesize that PDD may reverse inflammation-induced PF and be a novel therapeutic strategy. Methods: Adult male C57BL/6 mice were used to establish a model of PF induced by bleomycin (BLM). The pulmonary index was measured, and histological and immunohistochemical examinations were made. Cell cultures of mouse alveolar epithelial cells were analyzed with Western blotting, co-immunoprecipitation, immunofluorescence, immunohistochemistry, siRNA transfection, cellular thermal shift assay and qRT-PCR. Results: The survival rate of PPD-treated mice was higher than that of untreated BLM-challenged mice. Expression of fibrotic hallmarks, including ι-SMA, TGF-β1 and collagen I, was reduced by PPD treatment, indicating attenuation of PF. Mice exposed to BLM had higher STING levels in lung tissue, and this was reduced by phosphorylated AMPK after activation by PPD. The role of phosphorylated AMPK in suppressing STING was confirmed in TGF-β1-incubated cells. Both in vivo and in vitro analyses indicated that PPD treatment attenuated BLM-induced PF by modulating the AMPK/STING signaling pathway. Conclusion: PPD ameliorated BLM-induced PF by multi-target regulation. The current study may help develop new therapeutic strategies for preventing PF

    Optical Logic Gates Excited by a Gauss Vortex Interference Beam Based on Spatial Self-Phase Modulation in 2D MoS<sub>2</sub>

    No full text
    Vortex beams with optical orbital angular momentum have broad prospects in future high-speed and large-capacity optical communication. In this investigation of materials science, we found that low-dimensional materials have feasibility and reliability in the development of optical logic gates in all-optical signal processing and computing technology. We found that spatial self-phase modulation patterns through the MoS2 dispersions can be modulated by the initial intensity, phase, and topological charge of a Gauss vortex superposition interference beam. We utilized these three degrees of freedom as the input signals of the optical logic gate, and the intensity of a selected checkpoint on spatial self-phase modulation patterns as the output signal. By setting appropriate thresholds as logic codes 0 and 1, two sets of novel optical logic gates, including AND, OR, and NOT gates, were implemented. These optical logic gates are expected to have great potential in optical logic operations, all-optical networks, and all-optical signal processing
    • …
    corecore