17,160 research outputs found

    Exclusive Lambda_b -> Lambda l^+ l^- decay in two Higgs doublet model

    Full text link
    Rare Lambda_b -> Lambda l^+ l^- decay is investigated in framework of general two Higgs doublet model, in which a new source of CP violation exists (model III). The polarization parameter, CP asymmetry and decay width are calculated. It is shown that CP asymmetry is a very sensitive tool for establishing model III.Comment: 16 pages, 3 figures, LaTeX formatte

    The meson BcB_c annihilation to leptons and inclusive light hadrons

    Get PDF
    The annihilation of the BcB_c meson to leptons and inclusive light hadrons is analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find that the decay mode, which escapes from the helicity suppression, contributes a sizable fraction width. According to the analysis, the branching ratio due to the contribution from the color-singlet component of the meson BcB_c can be of order (10^{-2}). We also estimate the contributions from the color-octet components. With the velocity scaling rule of NRQCD, we find that the color-octet contributions are sizable too, especially, in certain phase space of the annihilation they are greater than (or comparative to) the color-singlet component. A few observables relevant to the spectrum of charged lepton are suggested, that may be used as measurements on the color-octet and color-singlet components in the future BcB_c experiments. A typical long distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.

    Mechanisms for electron transport in atomic-scale one-dimensional wires: soliton and polaron effects

    Full text link
    We study one-electron tunneling through atomic-scale one-dimensional wires in the presence of coherent electron-phonon (e-ph) coupling. We use a full quantum model for the e-ph interaction within the wire with open boundary conditions. We illustrate the mechanisms of transport in the context of molecular wires subject to boundary conditions imposing the presence of a soliton defect in the molecule. Competition between polarons and solitons in the coherent transport is examined. The transport mechanisms proposed are generally applicable to other one-dimensional nanoscale systems with strong e-ph coupling.Comment: 7 pages, 4 figures, accepted for publication in Europhys. Let

    Tracking system analytic calibration activities for the Mariner Mars 1969 mission

    Get PDF
    Calibration activity of Deep Space Network in support of Mars encounter phase of Mariner Mars 1969 missio

    Deciphering the enigma of undetected species, phylogenetic, and functional diversity based on Good-Turing theory

    Get PDF
    Estimating the species, phylogenetic, and functional diversity of a community is challenging because rare species are often undetected, even with intensive sampling. The Good-Turing frequency formula, originally developed for cryptography, estimates in an ecological context the true frequencies of rare species in a single assemblage based on an incomplete sample of individuals. Until now, this formula has never been used to estimate undetected species, phylogenetic, and functional diversity. Here, we first generalize the Good-Turing formula to incomplete sampling of two assemblages. The original formula and its two-assemblage generalization provide a novel and unified approach to notation, terminology, and estimation of undetected biological diversity. For species richness, the Good-Turing framework offers an intuitive way to derive the non-parametric estimators of the undetected species richness in a single assemblage, and of the undetected species shared between two assemblages. For phylogenetic diversity, the unified approach leads to an estimator of the undetected Faith\u27s phylogenetic diversity (PD, the total length of undetected branches of a phylogenetic tree connecting all species), as well as a new estimator of undetected PD shared between two phylogenetic trees. For functional diversity based on species traits, the unified approach yields a new estimator of undetected Walker et al.\u27s functional attribute diversity (FAD, the total species-pairwise functional distance) in a single assemblage, as well as a new estimator of undetected FAD shared between two assemblages. Although some of the resulting estimators have been previously published (but derived with traditional mathematical inequalities), all taxonomic, phylogenetic, and functional diversity estimators are now derived under the same framework. All the derived estimators are theoretically lower bounds of the corresponding undetected diversities; our approach reveals the sufficient conditions under which the estimators are nearly unbiased, thus offering new insights. Simulation results are reported to numerically verify the performance of the derived estimators. We illustrate all estimators and assess their sampling uncertainty with an empirical dataset for Brazilian rain forest trees. These estimators should be widely applicable to many current problems in ecology, such as the effects of climate change on spatial and temporal beta diversity and the contribution of trait diversity to ecosystem multi-functionality

    Fragmentation of Nuclei at Intermediate and High Energies in Modified Cascade Model

    Get PDF
    The process of nuclear multifragmentation has been implemented, together with evaporation and fission channels of the disintegration of excited remnants in nucleus-nucleus collisions using percolation theory and the intranuclear cascade model. Colliding nuclei are treated as face--centered--cubic lattices with nucleons occupying the nodes of the lattice. The site--bond percolation model is used. The code can be applied for calculation of the fragmentation of nuclei in spallation and multifragmentation reactions.Comment: 19 pages, 10 figure

    Variations of the ISM Compactness Across the Main Sequence of Star-Forming Galaxies: Observations and Simulations

    Get PDF
    (abridged) The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (MM_*) plane, usually referred to as the star formation Main Sequence (MS). Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present \textsc{Chiburst}, a Markov Chain Monte Carlo (MCMC) Spectral Energy Distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, star formation rates, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate (sSFR), and the compactness parameter C\mathcal{C}, that parametrizes this geometry and hence the evolution of dust temperature (TdustT_{\rm{dust}}) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of Luminous Infrared Galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.Comment: 18 pages, 10 figures, accepted in Ap
    corecore