19,458 research outputs found

    Decays of the Meson BcB_c to a PP-Wave Charmonium State χc\chi_c or hch_c

    Full text link
    The semileptonic decays, Bc⟶χc(hc)+ℓ+νℓB_{c}{\longrightarrow}{\chi_c}(h_c)+{\ell}+{{\nu}}_{\ell}, and the two-body nonleptonic decays, Bc⟶χc(hc)+hB_{c}{\longrightarrow}{\chi_c}(h_c)+h, (here χc\chi_c and hch_c denote (ccˉ[3PJ])(c\bar c[^3P_J]) and (ccˉ[1P1])(c\bar c[^1P_1]) respectively, and hh indicates a meson) were computed. All of the form factors appearing in the relevant weak-current matrix elements with BcB_c as its initial state and a PP-wave charmonium state as its final state for the decays were precisely formulated in terms of two independent overlapping-integrations of the wave-functions of BcB_c and the PP-wave charmonium and with proper kinematics factors being `accompanied'. We found that the decays are quite sizable, so they may be accessible in Run-II at Tevatron and in the foreseen future at LHC, particularly, when BTeV and LHCB, the special detectors for B-physics, are borne in mind. In addition, we also pointed out that the decays Bc→hc+...B_c\to h_c+... may potentially be used as a fresh window to look for the hch_c charmonium state, and the cascade decays, Bc→χc[3P1,2]+l+νlB_c\to \chi_c[^3P_{1,2}]+l+\nu_l (Bc→χc[3P1,2]+hB_c\to \chi_c[^3P_{1,2}]+h) with one of the radiative decays χc[3P1,2]→J/ψ+γ\chi_c[^3P_{1,2}] \to J/\psi+\gamma being followed accordingly, may affect the observations of BcB_c meson through the decays Bc→J/ψ+l+νlB_{c}\to {J/\psi}+{l}+\nu_{l} (Bc→J/ψ+hB_c\to J/\psi+h) substantially.Comment: 24 pages, 3 figures, the replacement for improving the presentation and adding reference

    Weak-Light Ultraslow Vector Optical Solitons via Electromagnetically Induced Transparency

    Full text link
    We propose a scheme to generate temporal vector optical solitons in a lifetime broadened five-state atomic medium via electromagnetically induced transparency. We show that this scheme, which is fundamentally different from the passive one by using optical fibers, is capable of achieving distortion-free vector optical solitons with ultraslow propagating velocity under very weak drive conditions. We demonstrate both analytically and numerically that it is easy to realize Manakov temporal vector solitons by actively manipulating the dispersion and self- and cross-phase modulation effects of the system.Comment: 4 pages, 4 figure

    The meson BcB_c annihilation to leptons and inclusive light hadrons

    Get PDF
    The annihilation of the BcB_c meson to leptons and inclusive light hadrons is analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find that the decay mode, which escapes from the helicity suppression, contributes a sizable fraction width. According to the analysis, the branching ratio due to the contribution from the color-singlet component of the meson BcB_c can be of order (10^{-2}). We also estimate the contributions from the color-octet components. With the velocity scaling rule of NRQCD, we find that the color-octet contributions are sizable too, especially, in certain phase space of the annihilation they are greater than (or comparative to) the color-singlet component. A few observables relevant to the spectrum of charged lepton are suggested, that may be used as measurements on the color-octet and color-singlet components in the future BcB_c experiments. A typical long distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.

    Exclusive Lambda_b -> Lambda l^+ l^- decay in two Higgs doublet model

    Full text link
    Rare Lambda_b -> Lambda l^+ l^- decay is investigated in framework of general two Higgs doublet model, in which a new source of CP violation exists (model III). The polarization parameter, CP asymmetry and decay width are calculated. It is shown that CP asymmetry is a very sensitive tool for establishing model III.Comment: 16 pages, 3 figures, LaTeX formatte

    A Green's function decoupling scheme for the Edwards fermion-boson model

    Full text link
    Holes in a Mott insulator are represented by spinless fermions in the fermion-boson model introduced by Edwards. Although the physically interesting regime is for low to moderate fermion density the model has interesting properties over the whole density range. It has previously been studied at half-filling in the one-dimensional (1D) case by numerical methods, in particular exact diagonalization and density matrix renormalization group (DMRG). In the present study the one-particle Green's function is calculated analytically by means of a decoupling scheme for the equations of motion, valid for arbitrary density in 1D, 2D and 3D with fairly large boson energy and zero boson relaxation parameter. The Green's function is used to compute some ground state properties, and the one-fermion spectral function, for fermion densities n=0.1, 0.5 and 0.9 in the 1D case. The results are generally in good agreement with numerical results obtained by DMRG and dynamical DMRG and new light is shed on the nature of the ground state at different fillings. The Green's function approximation is sufficiently successful in 1D to justify future application to the 2D and 3D cases.Comment: 19 pages, 7 figures, final version with updated reference

    Transient thermal modeling with simulated solar radiation Final report

    Get PDF
    Transient thermal modeling with simulated solar radiatio
    • …
    corecore