22,040 research outputs found
Bosonic Super Liouville System: Lax Pair and Solution
We study the bosonic super Liouville system which is a statistical
transmutation of super Liouville system. Lax pair for the bosonic super
Liouville system is constructed using prolongation method, ensuring the Lax
integrability, and the solution to the equations of motion is also considered
via Leznov-Saveliev analysis.Comment: LaTeX, no figures, 11 page
Cancellation of Infrared Divergences in Hadronic Annihilation Decays of Heavy Quarkonia
In the framework of a newly developed factorization formalism which is based
on NRQCD, explicit cancellations are shown for the infrared divergences that
appeared in the previously calculated hadronic annihilation decay rates of
P-wave and D-wave heavy quarkonia. We extend them to a more general case that
to leading order in and next-to-leading order in , the infrared
divergences in the annihilation amplitudes of color-singlet
pair can be removed by including the contributions of
color-octet operators ,
, ... in NRQCD. We also give the decay widths of
at leading order in .Comment: 8 pages, LaTex(3 figures included), to be publishe
Unbounded Human Learning: Optimal Scheduling for Spaced Repetition
In the study of human learning, there is broad evidence that our ability to
retain information improves with repeated exposure and decays with delay since
last exposure. This plays a crucial role in the design of educational software,
leading to a trade-off between teaching new material and reviewing what has
already been taught. A common way to balance this trade-off is spaced
repetition, which uses periodic review of content to improve long-term
retention. Though spaced repetition is widely used in practice, e.g., in
electronic flashcard software, there is little formal understanding of the
design of these systems. Our paper addresses this gap in three ways. First, we
mine log data from spaced repetition software to establish the functional
dependence of retention on reinforcement and delay. Second, we use this memory
model to develop a stochastic model for spaced repetition systems. We propose a
queueing network model of the Leitner system for reviewing flashcards, along
with a heuristic approximation that admits a tractable optimization problem for
review scheduling. Finally, we empirically evaluate our queueing model through
a Mechanical Turk experiment, verifying a key qualitative prediction of our
model: the existence of a sharp phase transition in learning outcomes upon
increasing the rate of new item introductions.Comment: Accepted to the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining 201
Fourier mode dynamics for the nonlinear Schroedinger equation in one-dimensional bounded domains
We analyze the 1D focusing nonlinear Schr\"{o}dinger equation in a finite
interval with homogeneous Dirichlet or Neumann boundary conditions. There are
two main dynamics, the collapse which is very fast and a slow cascade of
Fourier modes. For the cubic nonlinearity the calculations show no long term
energy exchange between Fourier modes as opposed to higher nonlinearities. This
slow dynamics is explained by fairly simple amplitude equations for the
resonant Fourier modes. Their solutions are well behaved so filtering high
frequencies prevents collapse. Finally these equations elucidate the unique
role of the zero mode for the Neumann boundary conditions
The Casimir force of Quantum Spring in the (D+1)-dimensional spacetime
The Casimir effect for a massless scalar field on the helix boundary
condition which is named as quantum spring is studied in our recent
paper\cite{Feng}. In this paper, the Casimir effect of the quantum spring is
investigated in -dimensional spacetime for the massless and massive
scalar fields by using the zeta function techniques. We obtain the exact
results of the Casimir energy and Casimir force for any , which indicate a
symmetry of the two space dimensions. The Casimir energy and Casimir
force have different expressions for odd and even dimensional space in the
massless case but in both cases the force is attractive. In the case of
odd-dimensional space, the Casimir energy density can be expressed by the
Bernoulli numbers, while in the even case it can be expressed by the
-function. And we also show that the Casimir force has a maximum value
which depends on the spacetime dimensions. In particular, for a massive scalar
field, we found that the Casimir force varies as the mass of the field changes.Comment: 9 pages, 5 figures, v2, massive case added, refs. adde
Polarimetric Multispectral Imaging Technology
The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration
Origin of Scaling Behavior of Protein Packing Density: A Sequential Monte Carlo Study of Compact Long Chain Polymers
Single domain proteins are thought to be tightly packed. The introduction of
voids by mutations is often regarded as destabilizing. In this study we show
that packing density for single domain proteins decreases with chain length. We
find that the radius of gyration provides poor description of protein packing
but the alpha contact number we introduce here characterize proteins well. We
further demonstrate that protein-like scaling relationship between packing
density and chain length is observed in off-lattice self-avoiding walks. A key
problem in studying compact chain polymer is the attrition problem: It is
difficult to generate independent samples of compact long self-avoiding walks.
We develop an algorithm based on the framework of sequential Monte Carlo and
succeed in generating populations of compact long chain off-lattice polymers up
to length . Results based on analysis of these chain polymers suggest
that maintaining high packing density is only characteristic of short chain
proteins. We found that the scaling behavior of packing density with chain
length of proteins is a generic feature of random polymers satisfying loose
constraint in compactness. We conclude that proteins are not optimized by
evolution to eliminate packing voids.Comment: 9 pages, 10 figures. Accepted by J. Chem. Phy
The meson annihilation to leptons and inclusive light hadrons
The annihilation of the meson to leptons and inclusive light hadrons is
analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find
that the decay mode, which escapes from the helicity suppression, contributes a
sizable fraction width. According to the analysis, the branching ratio due to
the contribution from the color-singlet component of the meson can be of
order (10^{-2}). We also estimate the contributions from the color-octet
components. With the velocity scaling rule of NRQCD, we find that the
color-octet contributions are sizable too, especially, in certain phase space
of the annihilation they are greater than (or comparative to) the color-singlet
component. A few observables relevant to the spectrum of charged lepton are
suggested, that may be used as measurements on the color-octet and
color-singlet components in the future experiments. A typical long
distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.
A tracking algorithm for the stable spin polarization field in storage rings using stroboscopic averaging
Polarized protons have never been accelerated to more than about GeV. To
achieve polarized proton beams in RHIC (250GeV), HERA (820GeV), and the
TEVATRON (900GeV), ideas and techniques new to accelerator physics are needed.
In this publication we will stress an important aspect of very high energy
polarized proton beams, namely the fact that the equilibrium polarization
direction can vary substantially across the beam in the interaction region of a
high energy experiment when no countermeasure is taken. Such a divergence of
the polarization direction would not only diminish the average polarization
available to the particle physics experiment, but it would also make the
polarization involved in each collision analyzed in a detector strongly
dependent on the phase space position of the interacting particle. In order to
analyze and compensate this effect, methods for computing the equilibrium
polarization direction are needed. In this paper we introduce the method of
stroboscopic averaging, which computes this direction in a very efficient way.
Since only tracking data is needed, our method can be implemented easily in
existing spin tracking programs. Several examples demonstrate the importance of
the spin divergence and the applicability of stroboscopic averaging.Comment: 39 page
- …