1,527 research outputs found

    Klein tunneling and cone transport in AA-stacked bilayer graphene

    Get PDF
    We investigate the quantum tunneling of electrons in an AA-stacked bilayer graphene (BLG) nn-pp junction and nn-pp-nn junction. We show that Klein tunneling of an electron can occur in this system. The quasiparticles are not only chiral but are additionally described by a `cone index'. Due to the orthogonality of states with different cone indexes, electron transport across a potential barrier must strictly conserve the cone index and this leads to the protected cone transport which is unique in AA-stacked BLG. Together with the negative refraction of electrons, electrons residing in different cones can be spatially separated according to their cone index when transmitted across an nn-pp junction. This suggests the possibility of `cone-tronic' devices based on AA-stacked BLG. Finally, we calculate the junction conductance of the system.Comment: 11 pages, 7 figures; corrected typo, final submitted versio

    Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction

    Get PDF
    Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field

    Nonlinear optical conductivity of two-dimensional semiconductors with Rashba spin-orbit coupling in terahertz regime

    Get PDF
    We reveal that two-dimensional semiconductors with Rashba spin-orbit interaction (R2DG) exhibit exceptionally strong nonlinear optical response (NOR) in the terahertz frequency regime. The spin-split of the parabolic energy band in R2DG allows strong multiple-photon process to occur via inter-subband mechanism. We show sharp multiple photon edges in the nonlinear conductivity. The edges correspond to the cut-off effect produced by the multiple-photon process. For Rashba coupling parameter of λ R ≈ 10−10 eV m, electric field strength in the order of only 102 V/cm is required for the NOR to dominate over the linear response. Furthermore, the roles of the parabolic ‘free electron’ term H 0 and the linear Rashba term H R on NOR of R2DG are also investigated. Although the NOR is made possible due to the presence of a finite H R , H 0 does play an important role on the NOR especially in high temperature regime. H 0 has rendered R2DG a strong optical nonlinearity at elevated temperature which is not found in a purely linear system such as graphene. The results suggest the possibilities of Rashba spintronic system in the application of nonlinear terahertz devices

    Combined Pricing and Portfolio Option Procurement

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90569/1/poms1255.pd

    Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase

    Get PDF
    AbstractThe Warburg effect is known to be crucial for cancer cells to acquire energy. Nutrient deficiencies are an important phenomenon in solid tumors, but the effect on cancer cell metabolism is not yet clear. In this study, we demonstrate that starvation of HeLa cells by incubation with Hank's buffered salt solution (HBSS) induced cell apoptosis, which was accompanied by the induction of reactive oxygen species (ROS) production and AMP-activated protein kinase (AMPK) phosphorylation. Notably, HBSS starvation increased lactate production, cytoplasmic pyruvate content and decreased oxygen consumption, but failed to change the lactate dehydrogenase (LDH) activity or the glucose uptake. We found that HBSS starvation rapidly induced pyruvate dehydrogenase kinase (PDK) activation and pyruvate dehydrogenase (PDH) phosphorylation, both of which were inhibited by compound C (an AMPK inhibitor), NAC (a ROS scavenger), and the dominant negative mutant of AMPK. Our data further revealed the involvement of ROS production in AMPK activation. Moreover, DCA (a PDK inhibitor), NAC, and compound C all significantly decreased HBSS starvation-induced lactate production accompanied by enhancement of HBSS starvation-induced cell apoptosis. Not only in HeLa cells, HBSS-induced lactate production and PDH phosphorylation were also observed in CL1.5, A431 and human umbilical vein endothelial cells. Taken together, we for the first time demonstrated that a low-nutrient condition drives cancer cells to utilize glycolysis to produce ATP, and this increases the Warburg effect through a novel mechanism involving ROS/AMPK-dependent activation of PDK. Such an event contributes to protecting cells from apoptosis upon nutrient deprivation

    Low Threshold Two-Dimensional Annular Bragg Lasers

    Get PDF
    Lasing at telecommunication wavelengths from annular resonators employing radial Bragg reflectors is demonstrated at room temperature under pulsed optical pumping. Sub milliwatt pump threshold levels are observed for resonators with 0.5-1.5 wavelengths wide defects of radii 7-8 mm. The quality factors of the resonator modal fields are estimated to be on the order of a few thousands. The electromagnetic field is shown to be guided by the defect. Good agreement is found between the measured and calculated spectrum.Comment: 8 pages, 4 figure
    • 

    corecore