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Nonlinear optical conductivity of two-dimensional semiconductors with Rashba
spin-orbit coupling in terahertz regime
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Chao Zhang∗
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We show that two-dimensional semiconductors with Rashba spin-orbit interaction (R2DG) ex-
hibits exceptionally strong nonlinear optical response (NOR) in the terahertz frequency regime.
The spin-splitting of the parabolic energy band in R2DG allows strong multiple-photon process to
occur via inter-subband mechanism. We observe multiple sharp edges in the nonlinear conductiv-
ity frequency spectrum. The edges correspond to a cut-off effect produced by the multiple-photon
process. For Rashba coupling parameter of λR ≈ 10−10 eVm, electric field strength in the order
of only 102 V/cm is required for the NOR to dominate over the linear response. Furthermore, the
roles of the parabolic ‘free electron’ term H0 and the linear Rashba term HR on NOR of R2DG are
also investigated. Although the NOR is solely made possible due to the presence of a finite HR, H0

does play an important role on the NOR especially in high temperature regime. H0 has rendered
R2DG a strong optical nonlinearity at elevated temperature which is not found in a purely linear
system such as graphene. The results suggest the possibilities of Rashba spintronic system in the
application of nonlinear terahertz devices.

PACS numbers: 71.70.Ej, 73.21.Fg, 72.30.+q

I. INTRODUCTION

Following the advancement of spintronics1–5, two-
dimensional electronic system with lifted spin-degeneracy
has gained much attentions. It is possible to create fi-
nite spin-orbit interaction and to lift the spin-degeneracy
of a two-dimensional electronic system spontaneously in
the absence of an external magnetic field. In bulk ma-
terial with inversion asymmetry of the crystal structure,
SOI results in the lift of the spin-degeneracy intrinsically
via Dresselhaus SOI mechanism6. For two-dimensional
electrons, such as an electron gas confined in a quan-
tum well structure (QWS) and surface states of metals,
the electrons can undergo spontaneous lifting of the spin-
degeneracy if the confining potential is asymmetric. Such
effect is equivalent to the relativistic case of electron mov-
ing through a surface with inhomogeneous electric field.
In the rest frame of electrons, the electric field is rela-
tivistically equivalent to a magnetic field. This gener-
ates finite SOI which energetically separating the elec-
tron gas into two populations of different chirality. SOI
of this form is known is the Rashba spin-orbit interaction
(RSOI)7. The RSOI manifests itself as a left-and right-
shifting of the ‘free’ electron parabolic bands in phase-
space, characterized by Rashba coupling parameter λR.
The Rashba effect in QWS is especially interesting since
the RSOI strength can be tunable via external gating.

Recently, strong nonlinear optical response (NOR)
of graphene and several sister-structures have been

reported8–13. The strong optical nonlinearity of graphene
originates from the massless Dirac fermions residing at
the vicinity of K-point in the first Brillouin zone14–16.
The R2DG shares a similarity with K-point massless
Dirac Fermions in graphene. The motion of massless
Dirac Fermion in graphene is coupled to its pseudospin
while in R2DG electron motion is coupled to real spin. In
graphene, the psedospin-momentum coupling manifest it-
self as a Dirac Hamiltonian linear in k-spaceHK = vF σ⃗·p⃗
while in R2DG the real spin-momentum coupling man-
ifest itself as a Rashba Hamiltonian HR = vR(σ⃗ × p⃗)z
which is also linear in momentum space. The Fermi ve-
locity vF is about 106 m/s in graphene and vR = λR/~
is ‘Rashba velocity’ in R2DG. Due to the linear form
of HK and HR, strong terahertz four-wave mixing has
been predicted in both graphene and R2DG via intra-
subband mechanism12,17. Such nonlinear photon-mixing
effect occurs because the linear term is rich in higher or-
der harmonics when the electrons are perturbed by an
external electric field.

The spin-splitting of the parabolic band in R2DG cre-
ates additional pathway for optical transition via inter -
subband mechanism. While the inter-subband linear op-
tical response of R2DG has been studied in detail18,19,
the inter-subbband NOR of R2DG remains unknown.
In graphene, the inter-subband (optical transition be-
tween lower and upper branches of the Dirac cone) NOR
is huge due to the largeness of vF (NOR∝ v2F as re-
ported in8). Therefore, in order to achieve experimen-
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tally observable inter-subband NOR in R2DG, vR (and
hence λR) has to be sufficiently large. Although a
rather large λR ≈ 4 × 10−11 eVm has been achieved in
In0.53Ga0.47/In0.52Al0.48As QWS20,21, such RSOI corre-
sponds to vR of only 6 × 104 m/s, which is significantly
slower than vF in graphene. The NOR of this R2DG sys-
tem is expected to be approximately 104 times smaller
than graphene.
Several recent experimental work on BiTeI layered

semiconductor and Bi/Ag(111) surface has achieved gi-
ant RSOI in the order of λR ≈ 10−10 eVm22,23. The
one-order of magnitude increment of λR immediately sug-
gests the possibility of generating strong NOR compara-
ble to that found in graphene. Motivated by these exper-
imental results, we theoretically investigated the inter-
subband NOR of R2DG in terahertz frequency regime.
By performing a Floquet analysis on the electron-photon
coupled R2DG system24–26, we derived the light-dressed
states of R2DG in the presence of an external electric
field and determined the nonlinear optical conductivities
of R2DG up to third-order in the external field. For
a typical λR in the order of 10−11 eVm, the required
electric fields for NOR to dominate over the linear re-
sponse at 1 THz is only in the order of 102 V/cm. We
also investigate the roles of electron effective mass m∗

and λR on NOR. The R2DG is actually a mixture of
non-relativistic ‘free’ electron and relativistic massless
Dirac fermions with the non-relativistic parabolic com-
ponent H0 characterized by m∗ and the linear HR rel-
ativistic component characterized by λR. Interestingly,
the R2DG’s NOR, which is made possible due to the
presence of finite HR, depends not only on λR, but also
on m∗. Using recent giant RSOI experimental values of
λR

22,23, we compare optical nonlinearity in R2DG with
that of graphene, one of the strongest nonlinear materials
known to-date8,9. At high temperature regime, optical
nonlinearity of such Rashba systems can be three times
stronger than that of graphene. This clearly suggests a
potential of Rashba spintronic system in room tempera-
ture nonlinear terahertz application.

II. FORMALISM

In this section, we derive the photon-dressed elec-
tronic wavefunctions of R2DG under an external field
and describe the general recipe to calculate optical cur-
rent density. We consider a two-dimensionally confined
electron gas in x-y plane with RSOI (such as asymmet-
rically confined electron gas in InAs quantum well20,21

or surface states of metals, semiconductor and surface
alloys22,27,28). We consider the intrinsic case where elec-
trons occupies only the s = −1 band with Fermi level sit-

uated at the band-crossing point at T = 0 K(i.e. Fermi
level εF = 0). The Hamiltonian is a combination of a
parabolic free electron term H0 and a linear Rashba term
HR,

H(p) = H0(p) +HR(p) (1)

= α

[
p2x + p2y 0

0 p2x + p2y

]
+ vR

[
0 py + ipx

py − ipx 0

]
,

where α = 1/2m∗ and vR = λR/~. m∗ and λR are the
free electron effective mass and Rashba coupling param-
eter respectively. α and vR are related to the Rashba
splitting energy via ER = v2R/4α. px and py denotes the
x-and y-directional momentum component respectively.
The Hamiltonian of R2DG in phase space representation
is similar to that of the bilayer graphene (BLG) with
low energy trigonal warping, except that in R2DG the
parabolic term is diagonal while in BLG the parabolic
term is off-diagonal29,30. The eigenvalue is given as

εs = αp2 + svRp, (2)

where s = ±1 denoting the subband index as a result of
Rashba spin-splitting. The band structure is shown in
Fig. 1(a). The eigenfunction is

ξ0(p) =
1√
2

[
sp+/p

1

]
, (3)

where p± = py ± ipx and p = (p2x + p2y)
1/2. We con-

sider an external electric field in the form of E = x̂Eeiωt

along the x-direction. The vector potential is given as
A = E/iω. We can minimally couple the electron to the
photon via px → px + eA. The electron-photon inter-
action Hamiltonian can be obtained by the substitution
H′ = H(px → px + eA). Since H′ is time-periodic, the
light-dressed electronic wavefunction can be expressed as
a linear combination of Floquet states

Ψ(p) =

∞∑
n=0

ei(nω−ε+/~)tψn(p), (4)

where ψn(p) = (an(p), bn(p))
T is the Floquet states. It

is composed of the spinor components an(p) and bn(p),
each representing n-photon coupling of electron. By solv-
ing the Schroedinger equation i~∂Ψ(p)/∂t = H′Ψ(p), we
obtain a set of recursive equations connecting nth-order
spinor components with (n − 1)th order spinor compo-
nents
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an =
1

n~ω(n~ω − 2vRp)

{
−F

[
2iα (vRp− n~ω) px + v2Rp+

]
an−1 + vRF [(vRp− n~ω)− 2iαpxp+] bn−1

− αF2 (vRp− n~ω) an−2 − αvRF2p+bn−2 } , (5)

bn =
1

n~ω(n~ω − 2vRp)

{
−F

[
2iα (vRp− n~ω) px − v2Rp−

]
bn−1 − vRF [(vRp− n~ω) + 2iαpxp−] an−1

− αF2 (vRp− n~ω) bn−2 − αvRF2p−an−2 } , (6)

where F = eE/ω. By recursively applying Eq. (5) and
Eq. (6), we can construct spinor components to any order
in electron-photon coupling. The recursive nature of the
spinor components originates from the off-diagonal HR.
In fact, the off-diagonality of the Hamiltonian is a fun-

damental consequence due to the subband spin-splitting
in a two-dimensional system. For n = 0, there is no pho-
ton. The zero-order spinor components are found to be
a0 = p+/

√
2p and b0 = 1/

√
2, respectively, which is in

agreement with the single electron eigenfunction Eq. (3).
For n = 1, the spinor components are

a1 =
F√

2~ω(~ω − 2vRp)

{
−2iα (vRp− ~ω)

p+
p

+ vR [(vRp− ~ω)− 2iαpxp+]

}
, (7)

b1 =
F√

2~ω(~ω − 2vRp)

{
−2iα (vRp− ~ω)− vR

[
(vRp− ~ω)

p+
p

++2iαpxp

]}
, (8)

where ω = ω − i0. The frequency-dependent current
density can be calculated from

J = −eℜ
∫
pdpdϕĵN (vRp), (9)

where ℜ denotes real part, ĵ = Ψ†(p)v̂xΨ(p) is the cur-
rent operator and v̂x = ∂H(px + eA)/∂px is the velocity
operator

v̂x =

[
2α(px + eA) ivR

−ivR 2α(px + eA)

]
. (10)

The temperature dependence of J is contained in
N (vRp) = f(ε−)−f(ε+) where f(ε±) is the Fermi-Dirac
distribution function.

III. LINEAR OPTICAL RESPONSE

For linear optical response, the current operator is sim-
ply the overlap between n = 0 spinor components and
n = 1 spinor components over the velocity operator, i.e.

ĵ1 =
(
ψ†
0v̂xψ1 + ψ†

1v̂xϕ0

)
eiωt, (11)

where ψn = (an, bn)
T . We can apply the Dirac’s iden-

tity to eliminate the momentum integration in Eq. (9).
Integrating the remaining angular part, we obtain linear
optical conductivity

σ1(ω) =
e2

8~
N (~ω/2), (12)

which is consistent with the results calculated using
Kubo formalism18. The linear conductivity is shown
in Fig. 1. At T = 0 K, the linear conductivity is a
square function of incident photon frequency. The linear
conductivity becomes zero when a maximum frequency
~fmax = 4v2R/α = 8ER is exceeded. This happens be-
cause the energy spacing between s = +1 and s = −1
subbands is insufficient to accommodate high frequency
optical transition of the electron [see Fig. 1(a)]. For
ER = 2.1 meV, fmax ≈ 4 THz. At T = 77 K, states in
s = −1 subband with energy E > 0 are thermally pop-
ulated and also contributes to the linear conductivity.
These results in the smearing of the linear conductivity
up to about f = 10 THz.
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FIG. 1. (Color online) (a) Band structure of R2DG. The
Fermi energy is at εF = 0. The red (dashed) arrow denote
forbidden interband transition. The blue (solid) arrow de-
note permissible interband transition; (b) Linear conductivity.
Rashba energy of ER = 2.1 meV is used. The conductivity is
normalized by σR = e2/8~.

IV. THIRD-ORDER NONLINEAR OPTICAL
RESPONSE

The third-order nonlinear current operator consists of
two components: (i) a single-frequency term; and (ii)
triple-frequency term. The single-frequency term origi-
nates from the overlapping between ψ2 and ψ1 which car-
ries an oscillating part of eiωt; while the triple-frequency
term originates from the overlapping between ψ3 and ψ0

which carries an oscillating part of e3iωt. Explicitly, they
are given as

ĵ3(ω) =
(
ψ†
2v̂xψ1 + ψ†

1v̂xψ2

)
eiωt

ĵ3(3ω) =
(
ψ†
3v̂xψ0 + ψ†

0v̂xψ3

)
ei3ωt. (13)

The third-order nonlinear optical conductivity can then
be obtained by evaluating Eq. (9). The single-frequency
and triple-frequency conductivities are given, respec-
tively, as

σ3(ω) = σR
e2E2

~ω3

[
v2R
~ω

(2 + x)N (~ω) +
α

8
N

(
~ω
2

)]
,

(14)
and

σ3(3ω) = σR
e2E2

~ω3

[
v2R
~ω

(g1 + g2 + g3) + α (g4 + g5)

]
,

(15)

where σR = e2/8~ and

x =
~ω
4ER

g1 =

(
13

48
+
x

8
+
x2

2

)
N

(
~ω
2

)
g2 =

(
−2

3
+ 2x

)
N (~ω)

g3 =
15

16
N

(
3~ω
2

)
g4 = −1

3
N

(
~ω
2

)
g5 =

(
1

6
+ x

)
N

(
3~ω
2

)
. (16)

A. Frequency and temperature dependence
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3
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(b)

III

II

I

FIG. 2. (Color online) Third order nonlinear optical con-
ductivities σ(ω) (solid curve) and σ(3ω) (dashed curve) at
E = 1000 V/cm. (a) T = 0 K, the sharp edges marks the
cut-off of 1-photon edge (I), 2-photon edge (II) and 3-photon
edge (III); (b) T = 300K.

The frequency dependence of the third-order nonlin-
ear conductivities is shown in Fig. 2. We have chosen a
moderate Rashba splitting energy of ER = 2.1 meV and
‘Rashba velocity’ of vR = 5.026×104 m/s27. At T = 0 K
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three step-like edges are clearly observable for both σ(ω)
and σ(3ω). These steps are related to the existence of
three distinct Dirac delta functions δ(n~ω − 2vRp) with
n = 1, 2, 3 when evaluating the optical current integral
in Eq. (9). The separation between s = +1 and s = −1
subbands at a fixed ~ω is ∆ = ε+ − ε− = 2vRp. The
delta functions therefore physically represents the cut-off
of an optical process when electron absorb n-photon to
transit from s = −1 to s = +1 subband is no longer
possible. At low temperature, electrons are mostly resid-
ing in s = −1 subband. Since the maximum permissible
frequency-width for interband transition is hfmax = 8εR,
δ(n~ω−2vRp) truncates any n-photon process at ωmax/n,
giving rise to a ‘n-photon edge’ as shown in Fig. 2(a).
Albeit the similarity of graphene’s HK and R2DG’s HR,
such truncation does not occur in graphene because in
graphene the s = −1 subband does not ‘bend-up’ as
electron wavevector k increases. There is no fmax and
hence the permissible frequency for optical absorption
can increases as far as the linear Dirac-cone approxima-
tion still holds. The T = 300 K nonlinear conductiv-
ities are plotted in Fig. 2(b). At higher temperature,
the thermal excitation of electrons to higher lying states
washes out the n-photon edges. At low frequency, the
NOR is initially large but decreases with temperature
since low lying conducting states are thermally depopu-
lated. At higher frequency, the NOR however behaves in
a contrasting way: it is initially small and increases with
temperature. This is because the s = −1 electrons are
thermally excited to states with higher energy and are ca-
pable of performing large-frequency interband transition.
The optical response of R2DG is hence sensitively influ-
enced by temperature. At approximately f > 1 THz, the
σ3(3ω) > σ3(ω), signifying a stronger frequency tripling
effect is taking place.

B. Critical electric field strength

The nonlinear conductivities σ3(ω) and σ3(3ω) alone
are insufficient to determine whether a material is
strongly nonlinear since the linear response can be much
stronger and masks out the NOR. To quantify the de-
gree of optical nonlinearity, we define critical electric
field strength Ec as the required field strength to achieve
σ3 = σ1. Small Ec signifies strong optical nonlinear-
ity. The temperature dependence of the single-frequency
NOR Ec(ω) and triple-frequency NOR Ec(3ω) at THz
frequency regime is shown in Fig. 3. At low frequency
(f = 1 THz), Ec decreases with increasing temperature
since σ1 decreases very rapidly as a result of its stronger
temperature dependence in comparison with the nonlin-
ear terms [Fig. 3(a)]. At f = 2 [Fig. 3(b)] THz, a sharp
Ec-peak at low temperature regime can be seen. This
happens because f = 2 THz is situated at the vicinity of
the 2-photon edge. As temperature increases from zero,
smearing of the 2-photon edge decreases the NOR, re-
sulting in an initial rapid rise of Ec. As the temperature
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FIG. 3. (Color online) Temperature dependence of critical
electric field strength Ec(ω) (solid curve) and Ec(3ω) (dashed
curve) at various frequency: (a) 1 THz, (b) 2 THz, (c) 5
THz, and (d) 7 THz. The low temperature nonlinear conduc-
tivities are mainly contributed by 1-photon edge. At higher
temperature, the smearing of 2-photon and 3-photon edges
enhances the NOR, resulting in gradually decreasing critical
field strength.

is further increased, smearing of the 3-photon edge re-
plenishes the NOR and this effectively reduces Ec, giving
rise to the observed Ec-peak. At high frequency regime
[f = 5 THz in Fig. 3(c) and f = 7 THz in Fig. 3(d)], the
Ec behaves very differently. A low-temperature plateau
regime occurs before the gradual decrease of Ec. This
can be explained by the fact that when f > fmax (which
is about 4 THz in our case), the low temperature nonlin-
ear conductivities are mainly contributed by the smear-
ing of the 1-photon edge, which, coincidently, has the
same N (~ω/2) thermal factor as σ1(ω). The tempera-
ture dependence of Ec, which is the ratio of linear and
nonlinear term, is therefore a constant. As temperature
increases, the smearing of 2-photon and 3-photon edges
extend towards higher frequencies. This enhances the
NOR, resulting in the gradual decrease of Ec at higher
temperature. Interestingly, for f < 5 THz, both Ec(ω)
and Ec(3ω) show very little variation as T > 150 K.
Therefore, in few THz regime, the optical nonlinearity of
R2DG relative to its linear response is very stable as T
increases towards room temperature.

V. EFFECTS OF vR AND m∗ ON R2DG
NONLINEAR OPTICAL RESPONSE

In this section, the effects of RSOI coupling parameter
λR and electron effective mass m∗ on R2DG’s NOR is
discussed. λR and m∗ represents the relative weighting
of parabolic ‘free’ electron termH0 and linearHR term in
the R2DG Hamiltonian Eq. (1). Varying λRm (or equiv-
alently vR) and m

∗ is essentially equivalent to tuning the
R2DG into a non-relativistic, ‘free’ electron-like system
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(dominated by H0) or into a relativistic, massless Dirac
fermion-like system (dominated by HR). The vR of the
nonlinear conductivities are plotted for T = 0 K in Fig.
4(a) and for T = 300 K for Fig. 4(b) (with f = 1 THz,
E = 1000 V/cm and the effective mass is m∗ = 0.05me).
As vR → 0 (i.e. RSOI is completely absent), the NOR is
completely removed, as is evident in Eq. (14) and (15).
At T = 0 K, the n-photon edges again occurs. Since
ωmax ∝ vR, vR has to be sufficiently large in order to
produce subband-splitting of adequate frequency-width
to accommodate the electronic transition from s = −1 to
s = +1 subband. The first edge corresponds to the onset
of single-photon process. Multiple-photon processes be-
come possible as vR increases, creating the subsequent 2-
and 3-photon edges. At T = 300 K, the edges are washed
out due to thermal excitation. The smeared edges shifts
towards smaller vR since thermally excited electrons al-
lows the onset of the photon-edges at smaller vR. The
vR dependence of Ec at T = 0 K and T = 300 K are
plotted in Fig. 4(c) and Fig. 4(d) respectively. Note
that Ec is undefined in the yellow-shaded region the fig-
ures since both linear and nonlinear responses are strictly
zero when vR is too small. Ec is, in general, smaller when
vR is large when the RSOI is strong.
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FIG. 4. (Color online) vR-dependence of the nonlinear con-
ductivities, σ3(ω) (solid curve) and σ3(3ω) (dashed curve),
at: (a) T = 0 K; (b) T = 300 K with E = 1000 V/cm. vR-
dependence of the critical electric fields, Ec(ω) (solid curve)
and Ec(3ω) (dashed curve), at: (c) T = 0 K; and (d)
T = 300 K. The frequency is set to 1 THz and effective mass
m∗ = 0.05me. The shaded region in the (a) and (c) denotes
the regime when the Rashba splitting is too small to accom-
modate the optical transition of electrons.

Unlike vR which is externally tunable, the effective
electron mass m∗ is an intrinsic properties of the crys-
tal structure and cannot be tuned externally. However,
it is still constructive to study the m∗ dependency of
the NOR in order to understand the nonlinear behavior
of R2DG. Although an explicit evaluation of Eq. (13)
shows that the α = 1/2m∗ terms carried over from the
velocity operator v̂x is zero, m∗ does contained implic-
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FIG. 5. (Color online) m∗ dependence of the critical elec-
tric field strengths, Ec(ω) (solid curve) and Ec(3ω) (dashed
curve), of the frequency tripling term at 1 THz: (a) T = 4
K and (b) T = 15 K (vR = 5 × 104 m/s). (c) Tempera-
ture dependence of Ec(3ω) at various values of m∗. At low
temperature, Ec(3ω) is a complicated function of m∗ but is,
in general, smaller for larger m∗ (except m∗ = 0.05me) due
to the photon-edges. At high temperature regime, Ec(3ω) is
smaller for small m∗. The parabolic term H0 is therefore an
important component in achieving strong optical nonlinearity
at elevated temperature.

itly in the n-photon Floquet state ψn, as evident from
Eq. (7) and (8). The effective mass therefore play a role
in the NOR of R2DG albeit the fact that the subband
spin-splitting is a chiefly a consequence of the Rashba
term. In Fig. 5(a) and 5(b), the m∗ dependence of Ec is
plotted for m∗/m ranging from 0.03 to 0.35 for T = 4 K
and T = 15 K respectively. Since hfmax = 4m∗v2F , the
photon-edges (previously observed in Fig. 4) also occurs
in the m∗ dependence plot when m∗ is just right for the
onset of n-photon process (i.e. when fmax is a multiple
of the incoming photon’s frequency). This manifests as
the oscillating Ec in the m∗-dependent curve. However,
the edges are more sensitively influenced by thermal ex-
citation in the m∗ dependence curves. At T = 15 K [Fig.
5(b)], the edges are almost completely removed. In Fig.
5(c), we plot the temperature dependence of Ec(3ω) at
various m∗ values. In general, Ec(3ω) decreases reapidly
at elevated temperature [see also Fig. 3]. At low tem-
perature, due to the Ec oscillation of the m∗ dependence
curve [Fig. 5(a)], the NOR is sensitively influenced by the
m∗. However, as the oscillation is quickly washed out at
elevated temperature (i.e. when T > 50 K), Ec is gener-
ally smaller at decreasing m∗. This shows that stronger
optical nonlinearity is generated when m∗ is small in the
intermediate to room temperature regime.

VI. DISCUSSION

To summarize: NOR of R2DG is enhanced by two fac-
tors: (i) vR is large; and (ii) m∗ is small. We now discuss
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the physical significance of (i) and (ii). Factor (i) can be
understood from the fact that strong NOR is a unique
signature of purely linear system such as graphene HK

with large Fermi velocity vF . Since R2DG contains the
linear component HR, it is therefore expected to obtian
larger NOR when vR is large. The factor (ii) is a more
surprising result. Intuitively, one might expect a stronger
optical nonlinerity in R2DG as the ‘free’ electron term
vanishes H0 → 0 such that HR is strongly dominant and
the system becomes purely linear. Since H0 ∝ 1/2m∗,
this would imply stronger optical nonlinearity at large
m∗. This is, however, only true when T → 0. At low
temperature, the existence of sharp photon-edges does
enhance the optical nonlinearity significantly. At ele-
vated temperature, the photon-edges are completely re-
moved and the optical nonlinearity is no longer large. On
the other hand, with smaller m∗, the optical nonlinearity
diminishes much slower with temperature. This corre-
sponds to larger H0. Therefore, it can be concluded that
while large HR directly results in strong NOR, H0 has
rendered R2DG temperature-robust optical nonlinearity.
Therefore, H0 and HR are equally important in achieving
strong optical nonlinearity at elevated temperature.
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FIG. 6. (Color online) Comparison between Ec(3ω) of
graphene8 and R2DG in BiTeI layered semiconductor and
Bi/Ag(111) surface alloys: (a) 1 THz; (b) 2 THz; (c) 5 THz;
and (d) 7 THz. Although at low temperature regime single
layer graphene (SLG) has stronger optical nonlinearity (lower
Ec), this optical nonlinearity does not survive at higher tem-
perature. In contrast, R2DG shows stronger optical nonlin-
earity at elevated temperature.

Finally, we compare the NOR of R2DG with that of
a single layer graphene (which is described by a linear
Hamiltonian in the same form as HR). Experimentally,
strong RSOI in the order of vR = 4.6×105 m/s and vR =
5.8 × 105 m/s are achieved in Bi/Ag(111) surface state
and layered polar semiconductor BiTeI respectively22,23.

Using these realistic experimental values, we calculate
the important triple-frequency term Ec(3ω) of these
R2DG systems and comparison with graphene is made.
The temperature dependence of Ec(3ω) at f = 1 THz
[Fig. 6(a)], f = 2 THz [Fig. 6(b)], f = 5 THz [Fig. 6(c)]
and f = 7 THz [Fig. 6(d)] are plotted. For R2DG, the
Ec(3ω) is very sensitive to temperature variation only at
low temperature regime. It rapidly decreases at interme-
diate temperature regime and stabilizes as T → 300 K. In
contrast, Ec(3ω) of graphene always grows with increas-
ing temperature8. At room temperature, and assuming
that the RSOI survives at elevated temperature, the op-
tical nonlinearity of R2DG can be 3 times stronger than
graphene at 1 THz [Fig. 6(a)]. This temperature en-
hanced optical nonlinearity pinpoints a major difference
between the optical nonlinearity of a electronic system
with purely linear Hamiltonian and that of a system with
mixed linear and parabolic terms in its Hamiltonian.

VII. CONCLUSION

In conclusion, we have calculated the inter-subband
nonlinear optical spectrum of R2DG. The NOR of R2DG
is found to exhibit strong NOR in the important THz
regime. At low temperature, abrupt edges are observed
in the frequency spectrum of the nonlinear optical con-
ductivities. Such edges is a result of the cut-off effect
produced by each multiple-photon terms. In contrast
to an electronic system with purely linear Hamiltonian
(such as graphene single layer), the critical electric field
in R2DG decreases with increasing temperature. This in-
dicates that the presence of an parabolic termH0 induces
strong optical nonlinearity at higher temperature regime.
If strong RSOI in the order of λR = 10−10 eVm can be
preserved in room temperature, two-dimensional Rashba
system can potentially be used as a nonlinear terahertz
devices such as terahertz frequency up-converter. Re-
cently, the R2DG in Ir(111) surface covered by graphene
single layer has found to be well-protected from ambi-
ent atmosphere, and yet maintaining a strong RSOI in
the order of λR ≈ 10−10 eVm31. This provides a poten-
tial platform to experimentally probe the NOR of R2DG
without the need of an ultra-vacuum environment. How-
ever, extra care has to be taken in separating out the
NOR from graphene since graphene is also a strongly
nonlinear medium.
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