319 research outputs found

    Identification of protein complexes with quantitative proteomics in S. cerevisiae

    Get PDF
    Lipids are the building blocks of cellular membranes that function as barriers and in compartmentalization of cellular processes, and recently, as important intracellular signalling molecules. However, unlike proteins, lipids are small hydrophobic molecules that traffic primarily by poorly described nonvesicular routes, which are hypothesized to occur at membrane contact sites (MCSs). MCSs are regions where the endoplasmic reticulum (ER) makes direct physical contact with a partnering organelle, e.g., plasma membrane (PM). The ER portion of ER-PM MCSs is enriched in lipid-synthesizing enzymes, suggesting that lipid synthesis is directed to these sites and implying that MCSs are important for lipid traffic. Yeast is an ideal model to study ER-PM MCSs because of their abundance, with over 1000 contacts per cell, and their conserved nature in all eukaryotes. Uncovering the proteins that constitute MCSs is critical to understanding how lipids traffic is accomplished in cells, and how they act as signaling molecules. We have found that an ER called Scs2p localize to ER-PM MCSs and is important for their formation. We are focused on uncovering the molecular partners of Scs2p. Identification of protein complexes traditionally relies on first resolving purified protein samples by gel electrophoresis, followed by in-gel digestion of protein bands and analysis of peptides by mass spectrometry. This often limits the study to a small subset of proteins. Also, protein complexes are exposed to denaturing or non-physiological conditions during the procedure. To circumvent these problems, we have implemented a large-scale quantitative proteomics technique to extract unbiased and quantified data. We use stable isotope labeling with amino acids in cell culture (SILAC) to incorporate staple isotope nuclei in proteins in an untagged control strain. Equal volumes of tagged culture and untagged, SILAC-labeled culture are mixed together and lysed by grinding in liquid nitrogen. We then carry out an affinity purification procedure to pull down protein complexes. Finally, we precipitate the protein sample, which is ready for analysis by high-performance liquid chromatography/ tandem mass spectrometry. Most importantly, proteins in the control strain are labeled by the heavy isotope and will produce a mass/ charge shift that can be quantified against the unlabeled proteins in the bait strain. Therefore, contaminants, or unspecific binding can be easily eliminated. By using this approach, we have identified several novel proteins that localize to ER-PM MCSs. Here we present a detailed description of our approach

    The characterization of the saddle shaped nickel(III) porphyrin radical cation: an explicative NMR model for a ferromagnetically coupled metallo-porphyrin radical

    Get PDF
    Ni(III)(OETPP˙)(Br)2 is the first Ni(III) porphyrin radical cation with structural and (1)H and (13)C paramagnetic NMR data for porphyrinate systems. Associating EPR and NMR analyses with DFT calculations as a new model is capable of clearly determining the dominant state from two controversial spin distributions in the ring to be the Ni(III) LS coupled with an a1u spin-up radical

    TIME millimeter wave grating spectrometer

    Get PDF
    The Tomographic Ionized-carbon Mapping Experiment (TIME) utilizes grating spectrometers to achieve instantaneous wideband coverage with background-limited sensitivity. A unique approach is employed in which curved gratings are used in parallel plate waveguides to focus and diffract broadband light from feed horns toward detector arrays. TIME will measure singly ionized carbon fluctuations from 5 < z < 9 with an imaging spectrometer. 32 independent spectrometers are assembled into two stacks of 16, one per polarization. Each grating has 210 facets and provides a resolving power R of ~ 200 over the 186–324 GHz frequency range. The dispersed light is detected using 2-D arrays of transition edge sensor bolometers. The instrument is housed in a closed-cycle 4K–1K–300mK cryostat. The spectrometers and detectors are cooled using a dual-stage 250/300 mK refrigerator

    Efficacy of a paper-based interleukin-6 test strip combined with a spectrum-based optical reader for sequential monitoring and early recognition of respiratory failure in elderly pneumonia—a pilot study

    Get PDF
    Introduction: Community-acquired pneumonia (CAP) is lethal in elderly individuals who are more vulnerable to respiratory failure and require more emergency ventilation support than younger individuals. Interleukin-6 (IL-6) plays a crucial role and has predictive value in CAP; high serum IL-6 concentrations in adults are associated with high respiratory failure and mortality rates. Early detection of IL-6 concentrations can facilitate the timely stratification of patients at risk of acute respiratory failure. However, conventional enzyme-linked immunosorbent assay (ELISA) IL-6 measurement is laborious and time-consuming.Methods: The IL-6 rapid diagnostic system combined with a lateral flow immunoassay-based (LFA-based) IL-6 test strip and a spectrum-based optical reader is a novel tool developed for rapid and sequential bedside measurements of serum IL-6 concentrations. Here, we evaluated the correlation between the IL-6 rapid diagnostic system and the ELISA and the efficacy of the system in stratifying high-risk elderly patients with CAP. Thirty-six elderly patients (median age: 86.5 years; range: 65–97 years) with CAP were enrolled. CAP diagnosis was established based on the Infectious Diseases Society of America (IDSA) criteria. The severity of pneumonia was assessed using the CURB-65 score and Pneumonia Severity Index (PSI). IL-6 concentration was measured twice within 24 h of admission.Results: The primary endpoint variable was respiratory failure requiring invasive mechanical or non-invasive ventilation support after admission. IL-6 rapid diagnostic readouts correlated with ELISA results (p &lt; 0.0001) for 30 samples. Patients were predominantly male and bedridden (69.4%). Ten patients (27.7%) experienced respiratory failure during admission, and five (13.9%) died of pneumonia. Respiratory failure was associated with a higher mortality rate (p = 0.015). Decreased serum IL-6 concentration within 24 h after admission indicated a lower risk of developing respiratory failure in the later admission course (Receiver Operating Characteristic [ROC] curve = 0.696).Conclusion: Sequential IL-6 measurements with the IL-6 rapid diagnostic system might be useful in early clinical risk assessment and severity stratification of elderly patients with pneumonia. This system is a potential point-of-care diagnostic device for sequential serum IL-6 measurements that can be applied in variable healthcare systems

    Substrate Specificity and Plasticity of FERM-Containing Protein Tyrosine Phosphatases

    Get PDF
    SummaryEpidermal growth factor receptor (EGFR) pathway substrate 15 (Eps15) is a newly identified substrate for protein tyrosine phosphatase N3 (PTPN3), which belongs to the FERM-containing PTP subfamily comprising five members including PTPN3, N4, N13, N14, and N21. We solved the crystal structures of the PTPN3-Eps15 phosphopeptide complex and found that His812 of PTPN3 and Pro850 of Eps15 are responsible for the specific interaction between them. We defined the critical role of the additional residue Tyr676 of PTPN3, which is replaced by Ile939 in PTPN14, in recognition of tyrosine phosphorylated Eps15. The WPD loop necessary for catalysis is present in all members but not PTPN21. We identified that Glu instead of Asp in the WPE loop contributes to the catalytic incapability of PTPN21 due to an extended distance beyond protonation targeting a phosphotyrosine substrate. Together with in vivo validations, our results provide novel insights into the substrate specificity and plasticity of FERM-containing PTPs

    Genetic and Functional Analysis of the DLG4 Gene Encoding the Post-Synaptic Density Protein 95 in Schizophrenia

    Get PDF
    Hypofunction of N-methyl-D-aspartate (NMDA) receptor-mediated signal transduction has been implicated in the pathophysiology of schizophrenia. Post-synaptic density protein 95 (PSD95) plays a critical role in regulating the trafficking and activity of the NMDA receptor and altered expression of the PSD95 has been detected in the post-mortem brain of patients with schizophrenia. The study aimed to examine whether the DLG4 gene that encodes the PSD95 may confer genetic susceptibility to schizophrenia. We re-sequenced the core promoter, all the exons, and 3′ untranslated regions (UTR) of the DLG4 gene in 588 Taiwanese schizophrenic patients and conducted an association study with 539 non-psychotic subjects. We did not detect any rare mutations at the protein-coding sequences of the DLG4 gene associated with schizophrenia. Nevertheless, we identified four polymorphic markers at the core promoter and 5′ UTR and one single nucleotide polymorphism (SNP) at the 3′UTR of the DLG4 gene in this sample. Genetic analysis showed an association of a haplotype (C–D) derived from 2 polymorphic markers at the core promoter (odds ratio = 1.26, 95% confidence interval = 1.06–1.51, p = 0.01), and a borderline association of the T allele of the rs13331 at 3′UTR with schizophrenia (odds ratio = 1.19, 95% confidence interval = 0.99–1.43, p = 0.06). Further reporter gene assay showed that the C-D-C-C and the T allele of the rs13331 had significant lower activity than their counter parts. Our data indicate that the expression of the DLG4 gene is subject to regulation by the polymorphic markers at the core promoter region, 5′ and 3′UTR of the gene, and is associated with the susceptibility of schizophrenia
    corecore