509 research outputs found

    The Regulation and Expression of the Creatine Transporter: A Brief Review of Creatine Supplementation in Humans and Animals

    Get PDF
    Creatine monohydrate has become one of the most popular ergogenic sport supplements used today. It is a nonessential dietary compound that is both endogenously synthesized and naturally ingested through diet. Creatine ingested through supplementation has been observed to be absorbed into the muscle exclusively by means of a creatine transporter, CreaT1. The major rationale of creatine supplementation is to maximize the increase within the intracellular pool of total creatine (creatine + phosphocreatine). There is much evidence indicating that creatine supplementation can improve athletic performance and cellular bioenergetics, although variability does exist. It is hypothesized that this variability is due to the process that controls both the influx and efflux of creatine across the cell membrane, and is likely due to a decrease in activity of the creatine transporter from various compounding factors. Furthermore, additional data suggests that an individual's initial biological profile may partially determine the efficacy of a creatine supplementation protocol. This brief review will examine both animal and human research in relation to the regulation and expression of the creatine transporter (CreaT). The current literature is very preliminary in regards to examining how creatine supplementation affects CreaT expression while concomitantly following a resistance training regimen. In conclusion, it is prudent that future research begin to examine CreaT expression due to creatine supplementation in humans in much the same way as in animal models

    Association between cholesterol and 2,3-diphosphoglycerate in genetically selected hooded rat lines

    Full text link
    We have developed two strains of hooded rats with differing erythrocyte oxygen affinities by selection on red cell 2,3-diphosphoglycerate levels. Genetic studies have shown that these strains differ at one DPG-level-determining locus. This article reports the results of a study which involved measurement of plasma cholesterol levels in rats from the strains and the F 2 progeny of strain intercrosses. Low-DPG strain rats, with high oxygen affinity, had significantly higher mean cholesterol levels than High-DPG rats. Animals from the extremes of the F 2 distribution of DPG levels showed similar, significantly different mean cholesterol levels, indicating that the negative association between DPG and cholesterol levels in strain rats was not due to inadvertent fixation of unrelated genes during selection on DPG. The possibility is discussed that high oxygen affinity, brought about by low DPG levels, may be causative in increasing cholesterol levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44127/1/10528_2004_Article_BF00484383.pd

    Comparison of new forms of creatine in raising plasma creatine levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research has shown that plasma creatine levels are influenced by extracellular concentrations of insulin and glucose as well as by the intracellular creatine concentration. However, the form of creatine administered does not appear to have any effect although specific data on this is lacking. This study examined whether the administration of three different forms of creatine had different effects on plasma creatine concentrations and pharmacokinetics.</p> <p>Methods</p> <p>Six healthy subjects (three female and three male subjects) participated in the study. Each subject was assigned to ingest a single dose of isomolar amounts of creatine (4.4 g) in the form of creatine monohydrate (CrM), tri-creatine citrate (CrC), or creatine pyruvate (CrPyr) using a balanced cross-over design. Plasma concentration curves, determined over eight hours after ingestion, were subject to pharmacokinetic analysis and primary derived data were analyzed by repeated measures ANOVA.</p> <p>Results</p> <p>Mean peak concentrations and area under the curve (AUC) were significantly higher with CrPyr (17 and 14%, respectively) in comparison to CrM and CrC. Mean peak concentration and AUC were not significantly different between CrM and CrC. Despite the higher peak concentration with CrPyr there was no difference between the estimated velocity constants of absorption (ka) or elimination (kel) between the three treatments. There was no effect of treatment with CrPyr on the plasma pyruvate concentration.</p> <p>Conclusion</p> <p>The findings suggest that different forms of creatine result in slightly altered kinetics of plasma creatine absorption following ingestion of isomolar (with respect to creatine) doses of CrM, CrC and CrPyr although differences in ka could not be detected due to the small number of blood samples taken during the absorption phase. Characteristically this resulted in higher plasma concentrations of creatine with CrPyr. Differences in bioavailability are thought to be unlikely since absorption of CrM is already close to 100%. The small differences in kinetics are unlikely to have any effect on muscle creatine elevation during periods of creatine loading.</p

    Experimental Renal Insufficiency in Dogs

    No full text
    corecore