24 research outputs found

    Traffic Sign Interpretation in Real Road Scene

    Full text link
    Most existing traffic sign-related works are dedicated to detecting and recognizing part of traffic signs individually, which fails to analyze the global semantic logic among signs and may convey inaccurate traffic instruction. Following the above issues, we propose a traffic sign interpretation (TSI) task, which aims to interpret global semantic interrelated traffic signs (e.g.,~driving instruction-related texts, symbols, and guide panels) into a natural language for providing accurate instruction support to autonomous or assistant driving. Meanwhile, we design a multi-task learning architecture for TSI, which is responsible for detecting and recognizing various traffic signs and interpreting them into a natural language like a human. Furthermore, the absence of a public TSI available dataset prompts us to build a traffic sign interpretation dataset, namely TSI-CN. The dataset consists of real road scene images, which are captured from the highway and the urban way in China from a driver's perspective. It contains rich location labels of texts, symbols, and guide panels, and the corresponding natural language description labels. Experiments on TSI-CN demonstrate that the TSI task is achievable and the TSI architecture can interpret traffic signs from scenes successfully even if there is a complex semantic logic among signs. The TSI-CN dataset and the source code of the TSI architecture will be publicly available after the revision process

    α-Glucosidase Inhibitors From the Coral-Associated Fungus Aspergillus terreus

    Get PDF
    Nine novel butenolide derivatives, including four pairs of enantiomers, named (±)-asperteretones A–D (1a/1b–4a/4b), and a racemate, named asperteretone E (5), were isolated and identified from the coral-associated fungus Aspergillus terreus. All the structures were established based on extensive spectroscopic analyses, including HRESIMS and NMR data. The chiral chromatography analyses allowed the separation of (±)-asperteretones A–D, whose absolute configurations were further confirmed by experimental and calculated electronic circular dichroism (ECD) analysis. Structurally, compounds 2–5 represented the first examples of prenylated γ-butenolides bearing 2-phenyl-3-benzyl-4H-furan-1-one motifs, and their crucial biogenetically related metabolite, compound 1, was uniquely defined by an unexpected cleavage of oxygen bridge between C-1 and C-4. Importantly, (±)-asperteretal D and (4S)-4-decarboxylflavipesolide C were revised to (±)-asperteretones B (2a/2b) and D (4), respectively. Additionally, compounds 1a/1b–4a/4b and 5 were evaluated for the α-glucosidase inhibitory activity, and all these compounds exhibited potent inhibitory potency against α-glucosidase, with IC50 values ranging from 15.7 ± 1.1 to 53.1 ± 1.4 μM, which was much lower than that of the positive control acarbose (IC50 = 154.7 ± 8.1 μM), endowing them as promising leading molecules for the discovery of new α-glucosidase inhibitors for type-2 diabetes mellitus treatment

    New Polyketides With Anti-Inflammatory Activity From the Fungus Aspergillus rugulosa

    Get PDF
    Two new polyketide compounds, asperulosins A and B (1–2), and one new prenylated small molecule, asperulosin C (3), along with nine known compounds (4–12), were isolated and identified from a fungus Aspergillus rugulosa. Their structures were extensively elucidated via HRESIMS, 1D, and 2D NMR analysis. The absolute configurations of the new compounds were determined by the comparison of their electronic circular dichroism (ECD), calculated ECD spectra, and the detailed discussion with those in previous reports. Structurally, compounds 1 and 2 belonged to the polyketide family and were from different origins. Compound 2 was constructed by five continuous quaternary carbon atoms, which occur rarely in natural products. All of the isolates were evaluated for anti-inflammatory activity against the production of nitric oxide (NO) in lipopolysaccharide (LPS)-induced RAW264.7 cells. Among those, compounds 1 and 5 showed a significant inhibitory effect on NO production with IC50 values of 1.49 ± 0.31 and 3.41 ± 0.85 μM, respectively. Additionally, compounds 1 and 5 markedly increased the secretion of anti-inflammatory cytokine IL10 while suppressing the secretion of pro-inflammatory cytokines IL6, TNF-α, IFN-γ, MCP-1, and IL12. Besides, 1 and 5 inhibited the transcription level of pro-inflammatory macrophage markers IL6, IL1β, and TNF-α while remarkably elevating the anti-inflammatory factor IL10 and M2 macrophage markers ARG1 and CD206. Moreover, 1 and 5 restrained the expression and nuclear translocation of NF-κB, as well as its downstream signaling proteins COX-2 and iNOS. All these results suggest that 1 and 5 have potential as anti-inflammatory agents, with better or comparable activities than those of the positive control, dexamethasone

    Automatic Clustering Collaborative Compressed Spectrum Sensing in Wide-Band Heterogeneous Cognitive Radio Networks

    No full text

    Sustainable Growth Drivers: Unveiling the Role Played by Carbon Productivity

    No full text
    In global climate change, improving carbon productivity holds great importance for China’s sustainable growth. Based on panel data of 30 Chinese provinces and cities from 1997–2017, the drivers, spatial effects, and convergence characteristics of carbon productivity in China are explored by combining a factor decomposition framework and a spatial panel model. The findings show that (1) China’s carbon productivity shows continuous positive growth, and the substitution effect of capital for energy dominates this changing pattern; (2) There is a β-convergence trend and club convergence in China’s carbon productivity, and the spatial technology spillover accelerates the convergence rate; (3) With its accelerated industrial transformation and technological upgrading, China’s current carbon productivity converges faster than its earlier stage, and the role of physical capital investment has gradually shifted to suppression. In contrast, the positive push of human capital investment has been strengthened; (4) From the perspective of the realization mechanism, the convergence of carbon productivity in China mainly comes from the convergence of energy restructuring and capital-energy substitution. These findings can help China narrow the inter-provincial carbon productivity gap in terms of improving factor structure, upgrading technology, etc., and provide references for sustainable growth decision making in China and around the world

    Spirohypertones A and B as potent antipsoriatics: Tumor necrosis factor-α inhibitors with unprecedented chemical architectures

    No full text
    Tumor necrosis factor-α (TNF-α) is a promising target for inflammatory and autoimmune diseases. Spirohypertones A (1) and B (2), two unprecedented polycyclic polyprenylated acylphloroglucinols with highly rearranged skeletons, were isolated from Hypericum patulum. The structures of 1 and 2 were confirmed through comprehensive spectroscopic analysis, single-crystal X-ray diffraction and electronic circular dichroism calculations. Importantly, 2 showed remarkable TNF-α inhibitory activity, which could protect L929 cells from death induced by co-incubation with TNF-α and actinomycin D. It also demonstrated the ability to suppress the inflammatory response in HaCaT cells stimulated with TNF-α. Notably, in an imiquimod-induced psoriasis murine model, 2 restrained symptoms of epidermal hyperplasia associated with psoriasis, presenting anti-inflammatory and antiproliferative effects. This discovery positions 2 as a potent TNF-α inhibitor, providing a promising lead compound for developing an antipsoriatic agent

    Asperversins A and B, Two Novel Meroterpenoids with an Unusual 5/6/6/6 Ring from the Marine-Derived Fungus Aspergillus versicolor

    No full text
    Asperversins A (1) and B (2), two novel meroterpenoids featuring an uncommon 5/6/6/6 ring system, along with five new analogues (3–7) and a known compound asperdemin (8), were obtained from the marine-derived fungus Aspergillus versicolor. Their structures and absolute configurations were confirmed by extensive spectroscopic analyses, single-crystal X-ray diffraction studies, and electronic circular dichroism (ECD) calculation. All new compounds were tested for their acetylcholinesterase enzyme (AChE) inhibitory activities and cytotoxic activities, of which compound 7 displayed moderate inhibitory activity against the AChE with an IC50 value of 13.6 μM
    corecore