21 research outputs found

    High-density genetic linkage mapping reveals low stability of QTLs across environments for economic traits in Eucalyptus

    Get PDF
    IntroductionEucalyptus urophylla, E. tereticornis and their hybrids are the most important commercial forest tree species in South China where they are grown for pulpwood and solid wood production. Construction of a fine-scale genetic linkage map and detecting quantitative trait loci (QTL) for economically important traits linked to these end-uses will facilitate identification of the main candidate genes and elucidate the regulatory mechanisms.MethodA high-density consensus map (a total of 2754 SNPs with 1359.18 cM) was constructed using genotyping by sequencing (GBS) on clonal progenies of E. urophylla × tereticornis hybrids. QTL mapping of growth and wood property traits were conducted in three common garden experiments, resulting in a total of 108 QTLs. A total of 1052 candidate genes were screened by the efficient combination of QTL mapping and transcriptome analysis.ResultsOnly ten QTLs were found to be stable across two environments, and only one (qSG10Stable mapped on chromosome 10, and associated with lignin syringyl-to-guaiacyl ratio) was stable across all three environments. Compared to other QTLs, qSG10Stable explained a very high level of phenotypic variation (18.4–23.6%), perhaps suggesting that QTLs with strong effects may be more stably inherited across multiple environments. Screened candidate genes were associated with some transcription factor families, such as TALE, which play an important role in the secondary growth of plant cell walls and the regulation of wood formation.DiscussionWhile QTLs such as qSG10Stable, found to be stable across three sites, appear to be comparatively uncommon, their identification is likely to be a key to practical QTL-based breeding. Further research involving clonally-replicated populations, deployed across multiple target planting sites, will be required to further elucidate QTL-by-environment interactions

    Xylem Transcriptome Analysis in Contrasting Wood Phenotypes of Eucalyptus urophylla × tereticornis Hybrids

    No full text
    An investigation of the effects of two important post-transcriptional regulatory mechanisms, gene transcription and alternative splicing (AS), on the wood formation of Eucalyptusurophylla × tereticornis, an economic tree species widely planted in southern China, was carried out. We performed RNA-seq on E. urophylla × tereticornis hybrids with highly contrasting wood basic density (BD), cellulose content (CC), hemicellulose content (HC), and lignin content (LC). Signals of strong differentially expressed genes (DEGs) and differentially spliced genes (DSGs) were detected in all four groups of wood properties, suggesting that gene transcription and selective splicing may have important regulatory roles in wood properties. We found that there was little overlap between DEGs and DSGs in groups of the same trait. Furthermore, the key DEGs and DSGs that were detected simultaneously in the four groups tended to be enriched in different Gene Ontology terms, Kyoto Encyclopedia of Genes and Genomes pathways, and transcription factors. These results implied that regulation of gene transcription and AS is controlled by independent regulatory systems in wood formation. Lastly, we detected transcript levels of known wood biosynthetic genes and found that 79 genes encoding mainly enzymes or proteins such as UGT, LAC, CAD, and CESA may be involved in the positive or negative regulation of wood properties. This study reveals potential molecular mechanisms that may regulate wood formation and will contribute to the genetic improvement of Eucalyptus

    Table_6_High-density genetic linkage mapping reveals low stability of QTLs across environments for economic traits in Eucalyptus.xlsx

    No full text
    IntroductionEucalyptus urophylla, E. tereticornis and their hybrids are the most important commercial forest tree species in South China where they are grown for pulpwood and solid wood production. Construction of a fine-scale genetic linkage map and detecting quantitative trait loci (QTL) for economically important traits linked to these end-uses will facilitate identification of the main candidate genes and elucidate the regulatory mechanisms.MethodA high-density consensus map (a total of 2754 SNPs with 1359.18 cM) was constructed using genotyping by sequencing (GBS) on clonal progenies of E. urophylla × tereticornis hybrids. QTL mapping of growth and wood property traits were conducted in three common garden experiments, resulting in a total of 108 QTLs. A total of 1052 candidate genes were screened by the efficient combination of QTL mapping and transcriptome analysis.ResultsOnly ten QTLs were found to be stable across two environments, and only one (qSG10Stable mapped on chromosome 10, and associated with lignin syringyl-to-guaiacyl ratio) was stable across all three environments. Compared to other QTLs, qSG10Stable explained a very high level of phenotypic variation (18.4–23.6%), perhaps suggesting that QTLs with strong effects may be more stably inherited across multiple environments. Screened candidate genes were associated with some transcription factor families, such as TALE, which play an important role in the secondary growth of plant cell walls and the regulation of wood formation.DiscussionWhile QTLs such as qSG10Stable, found to be stable across three sites, appear to be comparatively uncommon, their identification is likely to be a key to practical QTL-based breeding. Further research involving clonally-replicated populations, deployed across multiple target planting sites, will be required to further elucidate QTL-by-environment interactions.</p

    Table_7_High-density genetic linkage mapping reveals low stability of QTLs across environments for economic traits in Eucalyptus.xlsx

    No full text
    IntroductionEucalyptus urophylla, E. tereticornis and their hybrids are the most important commercial forest tree species in South China where they are grown for pulpwood and solid wood production. Construction of a fine-scale genetic linkage map and detecting quantitative trait loci (QTL) for economically important traits linked to these end-uses will facilitate identification of the main candidate genes and elucidate the regulatory mechanisms.MethodA high-density consensus map (a total of 2754 SNPs with 1359.18 cM) was constructed using genotyping by sequencing (GBS) on clonal progenies of E. urophylla × tereticornis hybrids. QTL mapping of growth and wood property traits were conducted in three common garden experiments, resulting in a total of 108 QTLs. A total of 1052 candidate genes were screened by the efficient combination of QTL mapping and transcriptome analysis.ResultsOnly ten QTLs were found to be stable across two environments, and only one (qSG10Stable mapped on chromosome 10, and associated with lignin syringyl-to-guaiacyl ratio) was stable across all three environments. Compared to other QTLs, qSG10Stable explained a very high level of phenotypic variation (18.4–23.6%), perhaps suggesting that QTLs with strong effects may be more stably inherited across multiple environments. Screened candidate genes were associated with some transcription factor families, such as TALE, which play an important role in the secondary growth of plant cell walls and the regulation of wood formation.DiscussionWhile QTLs such as qSG10Stable, found to be stable across three sites, appear to be comparatively uncommon, their identification is likely to be a key to practical QTL-based breeding. Further research involving clonally-replicated populations, deployed across multiple target planting sites, will be required to further elucidate QTL-by-environment interactions.</p

    Image_1_High-density genetic linkage mapping reveals low stability of QTLs across environments for economic traits in Eucalyptus.png

    No full text
    IntroductionEucalyptus urophylla, E. tereticornis and their hybrids are the most important commercial forest tree species in South China where they are grown for pulpwood and solid wood production. Construction of a fine-scale genetic linkage map and detecting quantitative trait loci (QTL) for economically important traits linked to these end-uses will facilitate identification of the main candidate genes and elucidate the regulatory mechanisms.MethodA high-density consensus map (a total of 2754 SNPs with 1359.18 cM) was constructed using genotyping by sequencing (GBS) on clonal progenies of E. urophylla × tereticornis hybrids. QTL mapping of growth and wood property traits were conducted in three common garden experiments, resulting in a total of 108 QTLs. A total of 1052 candidate genes were screened by the efficient combination of QTL mapping and transcriptome analysis.ResultsOnly ten QTLs were found to be stable across two environments, and only one (qSG10Stable mapped on chromosome 10, and associated with lignin syringyl-to-guaiacyl ratio) was stable across all three environments. Compared to other QTLs, qSG10Stable explained a very high level of phenotypic variation (18.4–23.6%), perhaps suggesting that QTLs with strong effects may be more stably inherited across multiple environments. Screened candidate genes were associated with some transcription factor families, such as TALE, which play an important role in the secondary growth of plant cell walls and the regulation of wood formation.DiscussionWhile QTLs such as qSG10Stable, found to be stable across three sites, appear to be comparatively uncommon, their identification is likely to be a key to practical QTL-based breeding. Further research involving clonally-replicated populations, deployed across multiple target planting sites, will be required to further elucidate QTL-by-environment interactions.</p

    Table_1_High-density genetic linkage mapping reveals low stability of QTLs across environments for economic traits in Eucalyptus.xlsx

    No full text
    IntroductionEucalyptus urophylla, E. tereticornis and their hybrids are the most important commercial forest tree species in South China where they are grown for pulpwood and solid wood production. Construction of a fine-scale genetic linkage map and detecting quantitative trait loci (QTL) for economically important traits linked to these end-uses will facilitate identification of the main candidate genes and elucidate the regulatory mechanisms.MethodA high-density consensus map (a total of 2754 SNPs with 1359.18 cM) was constructed using genotyping by sequencing (GBS) on clonal progenies of E. urophylla × tereticornis hybrids. QTL mapping of growth and wood property traits were conducted in three common garden experiments, resulting in a total of 108 QTLs. A total of 1052 candidate genes were screened by the efficient combination of QTL mapping and transcriptome analysis.ResultsOnly ten QTLs were found to be stable across two environments, and only one (qSG10Stable mapped on chromosome 10, and associated with lignin syringyl-to-guaiacyl ratio) was stable across all three environments. Compared to other QTLs, qSG10Stable explained a very high level of phenotypic variation (18.4–23.6%), perhaps suggesting that QTLs with strong effects may be more stably inherited across multiple environments. Screened candidate genes were associated with some transcription factor families, such as TALE, which play an important role in the secondary growth of plant cell walls and the regulation of wood formation.DiscussionWhile QTLs such as qSG10Stable, found to be stable across three sites, appear to be comparatively uncommon, their identification is likely to be a key to practical QTL-based breeding. Further research involving clonally-replicated populations, deployed across multiple target planting sites, will be required to further elucidate QTL-by-environment interactions.</p

    Table_5_High-density genetic linkage mapping reveals low stability of QTLs across environments for economic traits in Eucalyptus.xlsx

    No full text
    IntroductionEucalyptus urophylla, E. tereticornis and their hybrids are the most important commercial forest tree species in South China where they are grown for pulpwood and solid wood production. Construction of a fine-scale genetic linkage map and detecting quantitative trait loci (QTL) for economically important traits linked to these end-uses will facilitate identification of the main candidate genes and elucidate the regulatory mechanisms.MethodA high-density consensus map (a total of 2754 SNPs with 1359.18 cM) was constructed using genotyping by sequencing (GBS) on clonal progenies of E. urophylla × tereticornis hybrids. QTL mapping of growth and wood property traits were conducted in three common garden experiments, resulting in a total of 108 QTLs. A total of 1052 candidate genes were screened by the efficient combination of QTL mapping and transcriptome analysis.ResultsOnly ten QTLs were found to be stable across two environments, and only one (qSG10Stable mapped on chromosome 10, and associated with lignin syringyl-to-guaiacyl ratio) was stable across all three environments. Compared to other QTLs, qSG10Stable explained a very high level of phenotypic variation (18.4–23.6%), perhaps suggesting that QTLs with strong effects may be more stably inherited across multiple environments. Screened candidate genes were associated with some transcription factor families, such as TALE, which play an important role in the secondary growth of plant cell walls and the regulation of wood formation.DiscussionWhile QTLs such as qSG10Stable, found to be stable across three sites, appear to be comparatively uncommon, their identification is likely to be a key to practical QTL-based breeding. Further research involving clonally-replicated populations, deployed across multiple target planting sites, will be required to further elucidate QTL-by-environment interactions.</p

    Table_11_High-density genetic linkage mapping reveals low stability of QTLs across environments for economic traits in Eucalyptus.xlsx

    No full text
    IntroductionEucalyptus urophylla, E. tereticornis and their hybrids are the most important commercial forest tree species in South China where they are grown for pulpwood and solid wood production. Construction of a fine-scale genetic linkage map and detecting quantitative trait loci (QTL) for economically important traits linked to these end-uses will facilitate identification of the main candidate genes and elucidate the regulatory mechanisms.MethodA high-density consensus map (a total of 2754 SNPs with 1359.18 cM) was constructed using genotyping by sequencing (GBS) on clonal progenies of E. urophylla × tereticornis hybrids. QTL mapping of growth and wood property traits were conducted in three common garden experiments, resulting in a total of 108 QTLs. A total of 1052 candidate genes were screened by the efficient combination of QTL mapping and transcriptome analysis.ResultsOnly ten QTLs were found to be stable across two environments, and only one (qSG10Stable mapped on chromosome 10, and associated with lignin syringyl-to-guaiacyl ratio) was stable across all three environments. Compared to other QTLs, qSG10Stable explained a very high level of phenotypic variation (18.4–23.6%), perhaps suggesting that QTLs with strong effects may be more stably inherited across multiple environments. Screened candidate genes were associated with some transcription factor families, such as TALE, which play an important role in the secondary growth of plant cell walls and the regulation of wood formation.DiscussionWhile QTLs such as qSG10Stable, found to be stable across three sites, appear to be comparatively uncommon, their identification is likely to be a key to practical QTL-based breeding. Further research involving clonally-replicated populations, deployed across multiple target planting sites, will be required to further elucidate QTL-by-environment interactions.</p
    corecore