127 research outputs found
Three-dimensional numerical study of the deep western boundary current in the South China Sea
This study utilized a three-dimensional ocean general circulation model to investigate the intensity, thickness, and width of the three-dimensional deep western boundary current (DWBC) in the South China Sea (SCS). The numerical results show that the DWBC begins near the inlet of the Luzon overflow, flows westward along the northern boundary, proceeds southward along the western boundary, and ultimately terminates at the southern boundary. The mean DWBC’s velocity, thickness, and width is 4.78 cm/s, 1645 m, and 140 km, respectively. Combined with the dynamic results, it is evident that the three-dimensional structure of the DWBC appears to have been visibly weakened after the closure of the deep Luzon overflow. Strong deep mixing has a significantly stronger, thicker, and wider effect on the intensity, thickness, and width of the DWBC. Both the bottom and lateral friction coefficients negatively impact the DWBC in the SCS
A Novel Two-Layer DAG-based Reactive Protocol for IoT Data Reliability in Metaverse
Many applications, e.g., digital twins, rely on sensing data from Internet of
Things (IoT) networks, which is used to infer event(s) and initiate actions to
affect an environment. This gives rise to concerns relating to data integrity
and provenance. One possible solution to address these concerns is to employ
blockchain. However, blockchain has high resource requirements, thereby making
it unsuitable for use on resource-constrained IoT devices. To this end, this
paper proposes a novel approach, called two-layer directed acyclic graph
(2LDAG), whereby IoT devices only store a digital fingerprint of data generated
by their neighbors. Further, it proposes a novel proof-of-path (PoP) protocol
that allows an operator or digital twin to verify data in an on-demand manner.
The simulation results show 2LDAG has storage and communication cost that is
respectively two and three orders of magnitude lower than traditional
blockchain and also blockchains that use a DAG structure. Moreover, 2LDAG
achieves consensus even when 49\% of nodes are malicious
Prime-Boost Vaccine Regimen for SjTPl and SjC23 Schistosome Vaccines, Increases Efficacy in Water Buffalo in a Field Trial in China
Schistosomiasis remains a serious zoonotic disease in China and the Philippines. Water buffalo and cattle account for the majority of transmission. Vaccination of water buffalo is considered a key strategy to reduce disease prevalence. Previously, we showed that vaccination of water buffalo with SjC23 or SjCTPI plasmid DNA vaccines, induced 50% efficacy to challenge infection. Here, we evaluated several parameters to determine if we can develop a two dose vaccine that maintains the efficacy of the three dose vaccine. We performed four trials evaluating: (1) lab produced vs. GLP grade vaccines, (2) varying the time between prime and boost, (3) the influence of an IL-12 adjuvant, and (4) a two dose heterologous (DNA-protein) prime-boost. We found the source of the DNA vaccines did not matter, nor did increasing the interval between prime and boost. Elimination of the IL-12 plasmid lowered homologous DNA-DNA vaccine efficacy. A major finding was that the heterologous prime boost improved vaccine efficacy, with the prime-boost regimen incorporating both antigens providing a 55% reduction in adult worms and 53% reduction in liver eggs. Vaccinated buffalo produced vaccine-specific antibody responses. These trials suggest that highly effective vaccination against schistosomes can be achieved using a two dose regimen. No adjuvants were used with the protein boost, and the potential that addition of adjuvant to the protein boost to further increase efficacy should be evaluated. These results suggest that use of these two schistosome vaccines can be part of an integrated control strategy to reduce transmission of schistosomiasis in Asia
Spontaneous rotational symmetry breaking in KTaO interface superconductors
Strongly correlated electrons could display intriguing spontaneous broken
symmetries in the ground state. Understanding these symmetry breaking states is
fundamental to elucidate the various exotic quantum phases in condensed matter
physics. Here, we report an experimental observation of spontaneous rotational
symmetry breaking of the superconductivity at the interface of
YAlO/KTaO (111) with a superconducting transition temperature of 1.86
K. Both the magnetoresistance and upper critical field in an in-plane field
manifest striking twofold symmetric oscillations deep inside the
superconducting state, whereas the anisotropy vanishes in the normal state,
demonstrating that it is an intrinsic property of the superconducting phase. We
attribute this behavior to the mixed-parity superconducting state, which is an
admixture of -wave and -wave pairing components induced by strong
spin-orbit coupling. Our work demonstrates an unconventional nature of the
pairing interaction in the KTaO interface superconductor, and provides a
new platform to clarify a delicate interplay of electron correlation and
spin-orbit coupling.Comment: 7 pages, 4 figure
Water masses influence the variation of microbial communities in the Yangtze River Estuary and its adjacent waters
The Yangtze River estuary (YRE) are strongly influenced by the Kuroshio and terrigenous input from rivers, leading to the formation of distinct water masses, however, there remains a limited understanding of the full extent of this influence. Here the variation of water masses and bacterial communities of 58 seawater samples from the YRE and its adjacent waters were investigated. Our findings suggested that there were 5 water masses in the studied area: Black stream (BS), coastal water in the East China Sea (CW), nearshore mixed water (NM), mixed water in the middle and deep layers of the East China Sea (MM), and deep water blocks in the middle of the East China Sea (DM). The CW mass harbors the highest alpha diversity across all layers, whereas the NM mass exhibits higher diversity in the surface layer but lower in the middle layers. Proteobacteria was the most abundant taxa in all water masses, apart from that, in the surface layer masses, Cyanobacterium, Bacteroidota, and Actinobacteriota were the highest proportion in CW, while Bacteroidota and Actinobacteriota were the highest proportion in NM and BS; in the middle layer, Bacteroidota and Actinobacteriota were dominant phylum in CW and BS masses, but Cyanobacterium was main phylum in NM mass; in the bottom layer, Bacteroidota and Actinobacteriota were the dominant phylum in CW, while Marininimicrobia was the dominated phylum in DM and MM masses. Network analysis suggests water masses have obvious influence on community topological characteristics, moreover, community assembly across masses also differ greatly. Taken together, these results emphasized the significant impact of water masses on the bacterial composition, topological characteristics and assembly process, which may provide a theoretical foundation for predicting alterations in microbial communities within estuarine ecosystems under the influence of water masses
Electronically phase separated nano-network in antiferromagnetic insulating LaMnO3/PrMnO3/CaMnO3 tricolor superlattice
Strongly correlated materials often exhibit an electronic phase separation
(EPS) phenomena whose domain pattern is random in nature. The ability to
control the spatial arrangement of the electronic phases at microscopic scales
is highly desirable for tailoring their macroscopic properties and/or designing
novel electronic devices. Here we report the formation of EPS nanoscale network
in a mono-atomically stacked LaMnO3/CaMnO3/PrMnO3 superlattice grown on SrTiO3
(STO) (001) substrate, which is known to have an antiferromagnetic (AFM)
insulating ground state. The EPS nano-network is a consequence of an internal
strain relaxation triggered by the structural domain formation of the
underlying STO substrate at low temperatures. The same nanoscale network
pattern can be reproduced upon temperature cycling allowing us to employ
different local imaging techniques to directly compare the magnetic and
transport state of a single EPS domain. Our results confirm the one-to-one
correspondence between ferromagnetic (AFM) to metallic (insulating) state in
manganite. It also represents a significant step in a paradigm shift from
passively characterizing EPS in strongly correlated systems to actively
engaging in its manipulation
Prime-Boost Vaccine Regimen for SjTPI and SjC23 Schistosome Vaccines, Increases Efficacy in Water Buffalo in a Field Trial in China
Schistosomiasis remains a serious zoonotic disease in China and the Philippines. Water buffalo and cattle account for the majority of transmission. Vaccination of water buffalo is considered a key strategy to reduce disease prevalence. Previously, we showed that vaccination of water buffalo with SjC23 or SjCTPI plasmid DNA vaccines, induced 50% efficacy to challenge infection. Here, we evaluated several parameters to determine if we can develop a two dose vaccine that maintains the efficacy of the three dose vaccine. We performed four trials evaluating: (1) lab produced vs. GLP grade vaccines, (2) varying the time between prime and boost, (3) the influence of an IL-12 adjuvant, and (4) a two dose heterologous (DNA-protein) prime-boost. We found the source of the DNA vaccines did not matter, nor did increasing the interval between prime and boost. Elimination of the IL-12 plasmid lowered homologous DNA-DNA vaccine efficacy. A major finding was that the heterologous prime boost improved vaccine efficacy, with the prime-boost regimen incorporating both antigens providing a 55% reduction in adult worms and 53% reduction in liver eggs. Vaccinated buffalo produced vaccine-specific antibody responses. These trials suggest that highly effective vaccination against schistosomes can be achieved using a two dose regimen. No adjuvants were used with the protein boost, and the potential that addition of adjuvant to the protein boost to further increase efficacy should be evaluated. These results suggest that use of these two schistosome vaccines can be part of an integrated control strategy to reduce transmission of schistosomiasis in Asia
The microstructure of non-polar a-plane (11 2 0) InGaN quantum wells
Atom probe tomography and quantitative scanning transmission electron microscopy are used to assess the composition of non-polar a-plane (11-20) InGaN quantum wells for applications in optoelectronics. The average quantum well composition measured by atom probe tomography and quantitative scanning transmission electron microscopy quantitatively agrees with measurements by X-ray diffraction. Atom probe tomography is further applied to study the distribution of indium atoms in non-polar a-plane (11-20) InGaN quantum wells. An inhomogeneous indium distribution is observed by frequency distribution analysis of the atom probe tomography measurements. The optical properties of non-polar (11-20) InGaN quantum wells with indium compositions varying from 7.9% to 20.6% are studied. In contrast to non-polar m-plane (1-100) InGaN quantum wells, the non-polar a-plane (11-20) InGaN quantum wells emit at longer emission wavelengths at the equivalent indium composition. The non-polar a-plane (11-20) quantum wells also show broader spectral linewidths. The longer emission wavelengths and broader spectral linewidths may be related to the observed inhomogeneous indium distribution.This work was carried out with the support of the United Kingdom Engineering and Physical Sciences Research Council under Grants Nos. EP\J001627\1, EP/I012591/1, and EP\J003603\1. The European Research Council has also provided financial support under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 279361 (MACONS). J. Etheridge and S. D. Findlay acknowledge funding from the Australian Research Council (ARC) (Project Nos. DP110104734 and DP110101570, respectively). The Titan3 80-300 TEM/STEM at the Monash Centre for Electron Microscopy was supported by the ARC Grant No. LE0454166.This is the final version of the article. It first appeared from the American Institute of Physics via http://dx.doi.org/10.1063/1.494829
Co-infusion of haplo-identical CD19-chimeric antigen receptor T cells and stem cells achieved full donor engraftment in refractory acute lymphoblastic leukemia
Abstract Background Elderly patients with relapsed and refractory acute lymphoblastic leukemia (ALL) have poor prognosis. Autologous CD19 chimeric antigen receptor-modified T (CAR-T) cells have potentials to cure patients with B cell ALL; however, safety and efficacy of allogeneic CD19 CAR-T cells are still undetermined. Case presentation We treated a 71-year-old female with relapsed and refractory ALL who received co-infusion of haplo-identical donor-derived CD19-directed CAR-T cells and mobilized peripheral blood stem cells (PBSC) following induction chemotherapy. Undetectable minimal residual disease by flow cytometry was achieved, and full donor cell engraftment was established. The transient release of cytokines and mild fever were detected. Significantly elevated serum lactate dehydrogenase, alanine transaminase, bilirubin and glutamic-oxalacetic transaminase were observed from days 14 to 18, all of which were reversible after immunosuppressive therapy. Conclusions Our preliminary results suggest that co-infusion of haplo-identical donor-derived CAR-T cells and mobilized PBSCs may induce full donor engraftment in relapsed and refractory ALL including elderly patients, but complications related to donor cell infusions should still be cautioned. Trial registration Allogeneic CART-19 for Elderly Relapsed/Refractory CD19+ ALL. NCT0279955
- …