39 research outputs found

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Full text link
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    STING agonism overcomes STAT3-mediated immunosuppression and adaptive resistance to PARP inhibition in ovarian cancer

    Get PDF
    BackgroundPoly (ADP-ribose) polymerase (PARP) inhibition (PARPi) has demonstrated potent therapeutic efficacy in patients with BRCA-mutant ovarian cancer. However, acquired resistance to PARPi remains a major challenge in the clinic.MethodsPARPi-resistant ovarian cancer mouse models were generated by long-term treatment of olaparib in syngeneic Brca1-deficient ovarian tumors. Signal transducer and activator of transcription 3 (STAT3)-mediated immunosuppression was investigated in vitro by co-culture experiments and in vivo by analysis of immune cells in the tumor microenvironment (TME) of human and mouse PARPi-resistant tumors. Whole genome transcriptome analysis was performed to assess the antitumor immunomodulatory effect of STING (stimulator of interferon genes) agonists on myeloid cells in the TME of PARPi-resistant ovarian tumors. A STING agonist was used to overcome STAT3-mediated immunosuppression and acquired PARPi resistance in syngeneic and patient-derived xenografts models of ovarian cancer.ResultsIn this study, we uncover an adaptive resistance mechanism to PARP inhibition mediated by tumor-associated macrophages (TAMs) in the TME. Markedly increased populations of protumor macrophages are found in BRCA-deficient ovarian tumors that rendered resistance to PARPi in both murine models and patients. Mechanistically, PARP inhibition elevates the STAT3 signaling pathway in tumor cells, which in turn promotes protumor polarization of TAMs. STAT3 ablation in tumor cells mitigates polarization of protumor macrophages and increases tumor-infiltrating T cells on PARP inhibition. These findings are corroborated in patient-derived, PARPi-resistant BRCA1-mutant ovarian tumors. Importantly, STING agonists reshape the immunosuppressive TME by reprogramming myeloid cells and overcome the TME-dependent adaptive resistance to PARPi in ovarian cancer. This effect is further enhanced by addition of the programmed cell death protein-1 blockade.ConclusionsWe elucidate an adaptive immunosuppression mechanism rendering resistance to PARPi in BRCA1-mutant ovarian tumors. This is mediated by enrichment of protumor TAMs propelled by PARPi-induced STAT3 activation in tumor cells. We also provide a new strategy to reshape the immunosuppressive TME with STING agonists and overcome PARPi resistance in ovarian cancer.Peer reviewe

    A Novel Non-Isolated Step-Up DC/AC Inverter with Less Switches

    No full text
    In order to solve the problem of leakage current and step-up voltage capability associated with the single-phase single-stage non-isolated inverter, a new topology is proposed in this paper. The proposal has the advantages of less switch components, high step-up voltage capability and no leakage current. The three operation modes are discussed and the modulation strategy is designed. Finally, the prototype of the proposed new single-phase single-stage non-isolated inverter is established. The TMS320F28335 DSP and Xilinx XC6SLX9 FPGA are used to provide the system with digital control. The experimental results show that the proposed inverter achieved the boosted ability as well as the sinusoidal output voltage, whose total harmonic distortion is well below 5%, which meets the IEEE Std. 519-2014

    A Novel Damping Control of Grid-Connected Converter Based on Optimal Split-Inductor Concept

    No full text
    In this paper, a grid-connected converter is investigated. Since the AC side of the grid-connected converter is the LC filter, there is a second-order system resonance problem, and the conventional passive damping control has an inherent limitation of excessive power loss. Based on the mathematical model, a new damping control method is proposed in this paper. It is compared with the traditional solution in terms of damping effect, power loss and system stability. The optimal inductor split ratio is also discussed. The theoretical analysis demonstrates that the proposed method can not only achieve almost the same damping effect as the conventional solution, but also reduce the power loss of the damping resistor. The experimental tests are carried out and the experimental results verify the effectiveness of the proposed method

    Energy Management Strategy for Hybrid Energy Storage Electric Vehicles Based on Pontryagin’s Minimum Principle Considering Battery Degradation

    No full text
    The development of energy management strategy (EMS), which considers how power is distributed between the battery and ultracapacitor, can reduce the electric vehicle’s power consumption and slow down battery degradation. Therefore, the purpose of this paper is to develop an EMS for hybrid energy storage electric vehicles based on Pontryagin’s minimums principle (PMP) considering battery degradation. To verify the EMS, the hybrid energy storage electric vehicle model is first established. In the meantime, the battery cycle life trials are finished in order to develop a battery degradation model. Following that, a rule-based control approach and the PMP optimization algorithm are used to allocate power in a hybrid energy storage system (HESS) in a reasonable manner. Finally, a simulation experiment under urban dynamometer driving schedule (UDDS) settings verifies the established EMS, and the findings reveal that the suggested EMS has a lower energy consumption rate and battery deterioration rate than the rule-based method

    Some results on the reflexivity of operator subspaces

    No full text

    Weakly algebraic reflexivity and strongly algebraic reflexivity

    No full text

    Energy Management Strategy for Hybrid Energy Storage Electric Vehicles Based on Pontryagin’s Minimum Principle Considering Battery Degradation

    No full text
    The development of energy management strategy (EMS), which considers how power is distributed between the battery and ultracapacitor, can reduce the electric vehicle’s power consumption and slow down battery degradation. Therefore, the purpose of this paper is to develop an EMS for hybrid energy storage electric vehicles based on Pontryagin’s minimums principle (PMP) considering battery degradation. To verify the EMS, the hybrid energy storage electric vehicle model is first established. In the meantime, the battery cycle life trials are finished in order to develop a battery degradation model. Following that, a rule-based control approach and the PMP optimization algorithm are used to allocate power in a hybrid energy storage system (HESS) in a reasonable manner. Finally, a simulation experiment under urban dynamometer driving schedule (UDDS) settings verifies the established EMS, and the findings reveal that the suggested EMS has a lower energy consumption rate and battery deterioration rate than the rule-based method
    corecore