40 research outputs found
An integral gated mode single photon detector at telecom wavelengths
We demonstrate an integral gated mode single photon detector at telecom
wavelengths. The charge number of an avalanche pulse rather than the peak
current is monitored for single-photon detection. The transient spikes in
conventional gated mode operation are canceled completely by integrating, which
enables one to improve the performance of single photon detector greatly with
the same avalanche photodiode. This method has achieved a detection efficiency
of 29.9% at the dark count probability per gate equal to 5.57E-6/gate
(1.11E-6/ns) at 1550nm.Comment: word to PDF, 3 pages with 4 figure
Genetic dissection of QTLs for oil content in four maize DH populations
Oil is one of the main components in maize kernels. Increasing the total oil content (TOC) is favorable to optimize feeding requirement by improving maize quality. To better understand the genetic basis of TOC, quantitative trait loci (QTL) in four double haploid (DH) populations were explored. TOC exhibited continuously and approximately normal distribution in the four populations. The moderate to high broad-sense heritability (67.00-86.60%) indicated that the majority of TOC variations are controlled by genetic factors. A total of 16 QTLs were identified across all chromosomes in a range of 3.49-30.84% in term of phenotypic variation explained. Among them, six QTLs were identified as the major QTLs that explained phenotypic variation larger than 10%. Especially, qOC-1-3 and qOC-2-3 on chromosome 9 were recognized as the largest effect QTLs with 30.84% and 21.74% of phenotypic variance, respectively. Seventeen well-known genes involved in fatty acid metabolic pathway located within QTL intervals. These QTLs will enhance our understanding of the genetic basis of TOC in maize and offer prospective routes to clone candidate genes regulating TOC for breeding program to cultivate maize varieties with the better grain quality
An Enhanced Electrokinetic/Waste Fe(OH)<sub>3</sub> Permeable Reactive Barrier System for Soil Remediation in Sulfide Mine Areas
Traditional electrokinetic (EK) technology can remove contaminants from soil, but the efficiency is generally low. This study reports on the combination of enhanced EK and a waste ferric hydroxide (Fe(OH)3) permeable reactive barrier (PRB) for the remediation of soil in sulfide mine areas. Hydroxyethylene diphosphonic acid (HEDP) and FeCl3 were used as a compound chelating agent. The experimental results showed that EK combined with PRB technology (95.32% Cd removal) was more effective than single EK in removing cadmium (Cd) from the contaminated soil, because of the compound chelating agent and PRB filled with sustainable Fe(OH)3 adsorbent. Additionally, the application of PRB in combination with HEDP was able to increase the sulfate removal rate to 96.19%. The accumulated energy consumption of these two systems was 182.4 and 356 kWh/m3, respectively, after EK remediation using PRB
Uptake and Distribution of Cd in Sweet Maize Grown on Contaminated Soils: A Field-Scale Study
Maize is an economic crop that is also a candidate for use in phytoremediation in low-to-moderately Cd-contaminated soils, because the plant can accumulate high concentration of Cd in parts that are nonedible to humans while accumulating only a low concentration of Cd in the fruit. Maize cultivars CT38 and HZ were planted in field soils contaminated with Cd and nitrilotriacetic acid (NTA) was used to enhance the phytoextractive effect of the maize. Different organs of the plant were analyzed to identify the Cd sinks in the maize. A distinction was made between leaf sheath tissue and leaf lamina tissue. Cd concentrations decreased in the tissues in the following order: sheath > root > lamina > stem > fruit. The addition of NTA increased the amount of Cd absorbed but left the relative distribution of the metal among the plant organs essentially unchanged. The Cd in the fruit of maize was below the Chinese government’s permitted concentration in coarse cereals. Therefore, this study shows that it is possible to conduct maize phytoremediation of Cd-contaminated soil while, at the same time, harvesting a crop, for subsequent consumption