2 research outputs found

    Preclinical biological and physicochemical evaluation of two-photon engineered 3D biomimetic copolymer scaffolds for bone healing

    Get PDF
    A major challenge in orthopedics is the repair of large non-union bone fractures. A promising therapy for this indication is the use of biodegradable bioinspired biomaterials that stabilize the fracture site, relieve pain and initiate bone formation and healing. This study uses a multidisciplinary evaluation strategy to assess immunogenicity, allergenicity, bone responses and physicochemical properties of a novel biomaterial scaffold. Two-photon stereolithography generated personalized custom-built scaffolds with a repeating 3D structure of Schwarz Primitive minimal surface unit cell with a specific pore size of ∌400 ÎŒm from three different methacrylated poly(D,L-lactide-co-Δ-caprolactone) copolymers with lactide to caprolactone monomer ratios of 16 : 4, 18 : 2 and 9 : 1. Using in vitro and in vivo assays for bone responses, immunological reactions and degradation dynamics, we found that copolymer composition influenced the scaffold physicochemical and biological properties. The scaffolds with the fastest degradation rate correlated with adverse cellular effects and mechanical stiffness correlated with in vitro osteoblast mineralization. The physicochemical properties also correlated with in vivo bone healing and immune responses. Overall these observations provide compelling support for these scaffolds for bone repair and illustrate the effectiveness of a promising multidisciplinary strategy with great potential for the preclinical evaluation of biomaterials

    Immunogenic and allergenic responses against novel biomimetic biomaterials for tissue repair and regeneration

    No full text
    Die Verwendung von neuwertigen Biomaterialien zur Gewebe Wiederherstellung und Regeneration ist eine aufkeimende Nische. Allerdings, limitiert das Auftreten von EntzĂŒndungen und allergischen Reaktionen deren Einsatz. KĂŒrzlich wurden neue Biomaterialien fĂŒr die Knochenregeneration geschaffen, die ein 3D GerĂŒst und thermosensitive Elastin-Ă€hnliche Rekombinanten (ELRs) mit bioaktiven Resten enthalten. Wir evaluierten ungĂŒnstige inflammatorische-, immunologische, und allergische Reaktionen, welche die Verwendung dieser Biomaterialien limitieren könnten. Wir etablierten eine in vitro und in vivo biovertrĂ€glichkeits Plattform um diese Materialien zu testen. Zuerst inkubierten wir Milzzellen aus weiblichen BALB/c und C57BL/6 MĂ€usen mit den Biomaterialien um deren Proliferation und Zytokin Produktion zu messen. Als nĂ€chstes verwendeten wir ein high-throughput interperitoneales (i.p.) Maus Modell. Hier wurden die neuen Biomaterialien in weibliche BALB/c and C57BL/6 MĂ€use implantiert um die inflammatorischen Zellen und Zytokine in der FlĂŒssigkeit des Peritoneums zu messen. Zuletzt implantierten wir die Biomaterialien subkutan (s.c.) in einem subchronischen in vivo Maus Modell und untersuchten die EntzĂŒndungsreaktionen in Gewebsproben und die Genexpressionsmuster der Implantationsstelle. Antigen-spezifische Antikörper Titer im Blutserum, nach der Implantation, wurden ebenso bestimmt. In allen Versuchen wurden die Biomaterialien mit Sham Operationen oder Orthovita Vitoss TM Foam (Vitoss), welches ein bereits erhĂ€ltliches Material mit Rinder Kollagen fĂŒr Knochenregeneration ist, verglichen. Wir evaluierten, dass weder eine stimulierende noch eine inhibierende Immunreaktion auf des implantierte Biomaterial und das 3D GerĂŒst folgte, und sie minimale Fibrose, verglichen mit Vitoss, verursachten. Weiterns erzeugten Vitoss und die ELRs einen Antigen spezifischen IgG1 und IgE Titer. Ein Expressions Profil der Implantations Stellen zeigte die vermehrte Inflammation, Fibrose und Wundheilung-verwandte Gene in ELR- und positivekontroll-implantierten MĂ€usen, verglichen mit sham Kontrolle. Unsere Daten demonstrieren, dass die neuen Biomaterialien biokompatibel und sicher fĂŒr Gewebe Techniken sind. Diese Studie vergleicht auch Ergebnisse von verschiedenen Assays und zeigt, dass jedes eine andere Information preisgibt. Diese prĂ€- klinische Biomaterial Test Strategie ist nĂŒtzlich, um immun, infalmmatorische und allergische Reaktionen gegen Biomaterial zu testen.Using novel biomaterials for tissue repair and regeneration is a burgeoning field. However, the potential to induce adverse inflammatory and allergic responses limit their use. Recently, novel biomaterials including 3D scaffolds and a thermo-sensitive elastin-like recombinamers (ELRs) containing bioactive moieties were developed for bone healing and repair. We evaluated adverse inflammatory, immune and allergic responses, which could limit their use. We established in vitro and in vivo biocompatibility evaluation platforms to test these biomaterials. Firstly, BALB/c and C57BL/6 female splenocytes were incubated with biomaterials and proliferation as well as cytokine production was measured. Secondly, we used high throughput intraperitoneal (i.p.) mouse models. Female BALB/c and B6 mice were implanted with novel biomaterials followed by the measurement of inflammatory cells and cytokines of the peritoneal fluid. Lastly, we implanted the biomaterials subcutaneously (s.c.) in a subchronic in vivo mouse model and assessed inflammation in tissue sections and gene expression profiles of the implantation site. Ag-specific antibody titers in serum also evaluated after subcutaneous implantation. In all assays, biomaterials were compared with either sham surgery or Orthovita Vitoss Foam (Vitoss) containing bovine collagen, which is a currently available material for bone repair. We found that there was neither a stimulatory nor inhibitory immune response against scaffolds and ELRs and they induced mild inflammation and minimal fibrosis compared to the intense response to Vitoss. Additionally, Vitoss and ELRs both increased antigen-specific IgG1 and IgE titres. Gene expression profiling of the implantation sites revealed the upregulation of inflammation, fibrosis, and wound healing-related genes in ELR- and positive control-implanted mice compared to sham controls. Our data demonstrate that novel tested biomaterials are biocompatible and safe for use in tissue engineering. This study also compared results of different assays and showed that each assay provides different information. Therefore, we suggest that all three approaches are necessary for immunogenicity and allergenicity testing of biomaterials. This pre-clinical biomaterial testing strategy is useful for determining immune, inflammatory and allergic reaction to biomaterials.submitted by Katayoon ChangiAbweichender Titel laut Übersetzung der Verfasserin/des VerfassersMedizinische UniversitĂ€t Wien, Diss., 2017OeBB(VLID)243692
    corecore