493 research outputs found

    Fast and Robust Deconvolution-Based Image Reconstruction for Photoacoustic Tomography in Circular Geometry: Experimental Validation

    Get PDF
    Photoacoustic tomography (PAT) is a fast-developing biomedical imaging technology suitable for in vivo imaging. PAT in spherical or circular geometry gives good image resolution yet is slow or expensive in signal acquisition and image formation. Reducing the number of detection angles can ameliorate such issues, usually at the expense of image quality. This paper introduces a deconvolution-based algorithm that models the imaging process as a linear and shift-invariant system. As demonstrated by the in vivo experiment, this algorithm not only runs much faster than the back-projection algorithm but also shows stronger robustness in that it provides better image quality when detection angles are sparse. Therefore, this algorithm promises to enable real-time PAT in circular geometry

    Site application of alkali-activated slag concrete in a Chinese building

    Get PDF
    Kai Yang and Muhammed Basheer of the University of Leeds, Changhui Yang of Chongqing University, China, Jingjie Zhang and ©ɐȁ§Ɗȁ of Chongqing Construction Science Research Institute, China and Yun Bai of University College London report on the first cast-in-situ structural application of alkali-activated slag concrete in a building in China. Attention was given to quality control of raw materials and concrete, construction procedure and assessment of both the consistence and strength. This project has demonstrated that the quality and cost involved could be controlled with a detailed working plan. It has also been found that the alkali-activated slag concrete has the potential to be used in cold-weather construction, as the ambient temperature during the construction of the demonstration building was quite low, sometimes below 5°C

    Fast and Robust Deconvolution-Based Image Reconstruction for Photoacoustic Tomography in Circular Geometry: Experimental Validation

    Get PDF
    Photoacoustic tomography (PAT) is a fast-developing biomedical imaging technology suitable for in vivo imaging. PAT in spherical or circular geometry gives good image resolution yet is slow or expensive in signal acquisition and image formation. Reducing the number of detection angles can ameliorate such issues, usually at the expense of image quality. This paper introduces a deconvolution-based algorithm that models the imaging process as a linear and shift-invariant system. As demonstrated by the in vivo experiment, this algorithm not only runs much faster than the back-projection algorithm but also shows stronger robustness in that it provides better image quality when detection angles are sparse. Therefore, this algorithm promises to enable real-time PAT in circular geometry

    A New Guide Lifter for the Transceiver of USBL

    Get PDF
    A new guide lifter has been put forward for the transceiver of Ultra Short Base Line (USBL) with a worm gear reducer applied as self-locking of the lifter and a chain structure applied to drive the sliding shaft moving up and down. The new device is 7500 mm long and connected to the end of the transceiver. Linear motion products are introduced to ensure the shaft unable to rotate and the position measurements are provided by position sensors. A heavy self-sealing sliding bearing, which is 800 mm in length, keeps the shaft running reliably. Then the three-dimensional model is built and the structure parameters of the lifter are calculated. Later, the working process of the lifter is simulated to guarantee the movement parameters meet the request of USBL. Finally, the experiment on the intensity and stiffness of the lifter is carried out via the finite element model of the lifter built in ANSYS with the maximum load conditions and the result has been experimentally verified. This device provides a reliable approach of operating USBL which plays a vitally important role in ocean exploration and the research results are successfully applied to the scientific research vessels of Dayang No. 1 as well as Xiangyanghong No. 9

    Alanine aminotransferase to high- density lipoprotein cholesterol ratio is positively correlated with the occurrence of diabetes in the Chinese population: a population-based cohort study

    Get PDF
    ObjectiveBoth alanine aminotransferase (ALT) and high-density lipoprotein cholesterol (HDL-C) are closely related to glucose homeostasis in the body, and the main objective of this study was to investigate the association between ALT to HDL-C ratio (ALT/HDL-C ratio) and the risk of diabetes in a Chinese population.MethodsThe current study included 116,251 participants who underwent a healthy physical examination, and the study endpoint was defined as a diagnosis of new-onset diabetes. Multivariate Cox regression models and receiver operator characteristic curves were used to assess the association of the ALT/HDL-C ratio with diabetes onset.ResultsDuring the average observation period of 3.10 years, a total of 2,674 (2.3%) participants were diagnosed with new-onset diabetes, including 1,883 (1.62%) males and 791 (0.68%) females. After fully adjusting for confounding factors, we found a significant positive association between the ALT/HDL-C ratio and the risk of diabetes [Hazard ratios 1.06, 95% confidence intervals: 1.05, 1.06], and this association was significantly higher in males, obese individuals [body mass index ≥ 28 kg/m2] and individuals aged < 60 years (All P interaction < 0.05). In addition, the ALT/HDL-C ratio was significantly better than its components ALT and HDL-C in predicting diabetes in the Chinese population.ConclusionThere was a positive relationship between ALT/HDL-C ratio and diabetes risk in the Chinese population, and this relationship was significantly stronger in males, obese individuals, and individuals younger than 60 years old

    Strategic Choices of China’s New Energy Vehicle Industry: An Analysis Based on ANP and SWOT

    Get PDF
    This goal of this paper is to provide a framework by which China should accelerate the development and production of new energy vehicles, which should effectively address current energy and environmental pressures, while promoting the sustainable development of the automotive industry, which is an urgent task. In addition, this paper provides guidelines that seek to transform China’s auto industry while developing a new economic growth point to gain an international competitive advantage with strategic initiatives. This study aims to provide an ANP-SWOT (Analytic Network Process and Strength-Weakness-Opportunity-Threat analysis) approach for an interdependency analysis and to prioritize the new energy automobile industry in China. Firstly, a SWOT model is used to analyze the internal and external factors surrounding the development of the new energy automobile industry in China. Secondly, four types of development strategies are proposed by means of the SWOT matrix according to the conclusions of the factor analysis. Finally, the ANP network structure is designed to measure the effects of influential sub-factors, and then to define a strategic plan for China’s new energy automobile industry. The results of this study show that the optimal short-term development strategy for China’s new energy automotive industry is to increase the construction of new energy vehicle-related facilities, while the best long-term development strategy is to use local advantages and resources, through cost control measures which increase competition within the local new energy automotive industry
    corecore