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Abstract: Photoacoustic tomography (PAT) is a fast-developing biomedical imaging
technology suitable for in vivo imaging. PAT in spherical or circular geometry gives good
image resolution yet is slow or expensive in signal acquisition and image formation.
Reducing the number of detection angles can ameliorate such issues, usually at the
expense of image quality. This paper introduces a deconvolution-based algorithm that
models the imaging process as a linear and shift-invariant system. As demonstrated by the
in vivo experiment, this algorithm not only runs much faster than the back-projection
algorithm but also shows stronger robustness in that it provides better image quality when
detection angles are sparse. Therefore, this algorithm promises to enable real-time PAT in
circular geometry.

Index Terms: Photoacoustic tomography, deconvolution reconstruction, sparse detection
angles, real-time imaging, circular geometry.

1. Introduction
In the past decade, photoacoustic tomography (PAT) has emerged as a fast-developing biomedical
imaging technology [1], [2]. Based on the photoacoustic (PA) effect [3], PAT utilizes a laser source
to illuminate tissue and then detects the generated acoustic signals for imaging. PAT offers
advantages in many aspects. First, PAT uses nonionizing illumination that poses no health hazard
and is noninvasive. Second, as a hybrid of optical and ultrasound imaging techniques, PAT
combines the merits of both. It provides high optical contrast and good ultrasonic resolution, breaks
through the depth limit at the optical transport mean free path (�1 mm), and does not suffer from
ultrasound speckles. Third, since optical absorption is strongly related to physiological status, such
as oxygen saturation and concentration of hemoglobin, PA signals contain functional information.
Accordingly, in recent years PAT has been successfully applied to in vivo blood vessel imaging [4], [5]
and brain structural and functional imaging [6]–[8] of small animals. Thermoacoustic tomography
(TAT) is another important PA-based imaging technology. Utilizing a microwave illumination source,
TAT can image deeper than PAT and is especially suitable for breast tumor imaging [9]–[11].
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To enable the reconstruction of 3-D tissue structures in PAT, spherical, planar, and cylindrical
geometries are normally used in PA signal acquisition. In most applications, they are reduced to
circular and linear geometries to image a 2-D tissue cross section. Linear detection geometry
normally provides poorer image quality than circular geometry, because of its limited view of
detection. Yet, linear geometry is widely used because it is easily applicable to various tissue
shapes and can lead to fast, or even real-time, imaging [4], [12] by using a linear transducer array
and corresponding fast algorithms [13], [14]. Circular geometry offers full-view detection and hence
good image resolution. However, imaging in such geometry is usually very slow for two reasons:
the long signal acquisition time (introduced by rotating a single-element transducer around the
tissue) and the large time cost of the reconstruction algorithms (either the commonly used exact
back-projection algorithm [15] or the simple delay-and-sum algorithm [16]). The former can be
overcome by using a ring-shaped transducer array [17], but the latter, to the best of our knowledge,
still remains a problem. For example, the 512-element-array-based PAT system reported in [17]
can achieve real-time signal acquisition but not real-time image formation.

A possible solution is to reduce the number of detection angles in circular geometry, which will
decrease not only image reconstruction time but will also signal acquisition time or equipment cost.
Nevertheless, for most algorithms the quality of the reconstructed image is strongly related to the
number of detection angles. In many cases, 128 angles or fewer may result in strong artifacts in the
reconstructed image. The compressed sensing algorithm can be utilized to improve image quality
[18], but this algorithm is in essence an optimization approach that requires iterative calculation and,
therefore, is not suitable for fast or real-time imaging.

In this paper, we introduce the deconvolution reconstruction (DR) algorithm for PAT in 3-D
spherical geometry and 2-D circular geometry. The DR algorithm is very fast since its key step is the
Fourier-based deconvolution. Moreover, the DR algorithm renders better image quality than other
popular algorithms when using a small number of detection angles. Therefore, the DR algorithm
promises to enable real-time imaging in circular geometry. We have previously published basic
formulas and simulation results of the DR algorithm to show that it has good precision and is
insensitive to data noise [19]. Here, the DR algorithm is systematically described and then verified
by experimental data with an emphasis on the case of sparse detection angles.

The paper is organized as follows. First, a brief description of the PA forward problem and
solution is provided. Then, the DR algorithm is derived mathematically and explained physically.
In vivo experimental results on the mouse cerebral cortex are then presented to validate this
algorithm.

2. Forward Solution
The PA theory, as summarized in [20], is briefly described here. The relation between the
illuminating light and the excited acoustic wave in an inviscid medium obeys the following wave
equation:

r2pðr; tÞ � 1
c2

@2

@t2
pðr; tÞ ¼ � �

Cp
AðrÞ @IðtÞ

@t
(1)

where AðrÞ is the absorbed energy density, pðr; tÞ is the excited acoustic pressure, r is the 3-D
position vector, t is the time, IðtÞ is the illumination pulse function, c is the sound speed, � is the
coefficient of volumetric thermal expansion, and Cp is the specific heat.

IðtÞ is usually assumed to be a delta function, and c is assumed to be constant. PA signals are
detected along a sphere, which is defined by rd , whose radius is rd and whose center is the origin.
Then, by using Green’s functions, the detected PA signal pðrd ; tÞ can be expressed as

pðrd ; tÞ ¼
�

4�Cp

@

@t
jr0�rd j¼ct

Aðr0Þ
t

d2r0: (2))
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In practical experiments, each detected signal is convolved by both the illumination pulse and the
transducer impulse response. We can get a better estimation of pðrd ; tÞ by deconvolving the signal
if the impulse response is known and the signal-to-noise ratio is sufficiently high. Then, image
reconstruction is an inverse problem of calculating AðrÞ from pðrd ; tÞ, which is solved
algorithmically.

3. DR Algorithm
The basic idea of the DR algorithm is to construct a 3-D system. When the system input is AðrÞ, the
output will be a 3-D space function that is related to pðrd ; tÞ. By reasonable design, this system can
be constructed to be linear and shift invariant. Then, AðrÞ can be calculated by deconvolution. In
this section, we will give the 3-D formulation, physical meaning, and 2-D discrete implementation
(with time complexity analysis) of the DR algorithm.

3.1. Formulation
Fundamental formulas of the DR algorithm are presented here. See [19] for more details.
Let us define

Sðrd ; tÞ ¼
Z t
0

pðrd ; tÞdt

2
4

3
5 � t : (3)

Substituting (2) into (3) leads to

Sðrd ; tÞ ¼ �
jr0�rd j¼ct

Aðr0Þd2r0 (4)

where � ¼ �=ð4�CpÞ.
In order to construct the linear and shift-invariant system, we start by constructing the system

output from pðrd ; tÞ when the input is AðrÞ. The output function CðrÞ is constructed as

CðrÞ ¼ S
r

jrj � rd ; tmax �
jrj
c

� �
(5)

where tmax is an adjustable parameter. PA signals during time 0–tmax are used to construct CðrÞ. In
order to cover the major information in PA signals, normally, it should be satisfied that ctmax � 2rd .
CðrÞ is zero when jrj9 ctmax.

Substituting (4) into (5) leads to

CðrÞ ¼ �
�

Aðr0Þd2r0 (6)

where the integral surface � can be expressed as

r0 � r

jrj � rd
����

���� ¼ ctmax � jrj: (7)

Considering that the detected tissue is contained by the sphere rd , Aðr0Þ has nonzero values only if
jr0jG rd (which means Aðr0Þ needs to be integrated only over � within this region). Further,
2jr0jG ctmax � rd if ctmax is greater than 3rd , or the tissue volume is relatively small. If each ultrasonic
detector receives PA signals within a sufficiently small solid angle, (7) can be approximated to the
following surface by using the Taylor series expanded to the first order [19]:

jr0 � rj ¼ ctmax � rd : (8)

)

ZZ

)
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The smaller the maximum of jr0j is, the smaller the ignored higher order Taylor polynomials. In other
words, a smaller tissue volume in comparison to the detection radius results in less error. Thus, (6)
can be approximated as

CðrÞ ¼ �
jr0�rj¼ctmax�rd

Aðr0Þd2r0: (9)

Now, the relationship between AðrÞ and CðrÞ is clear. The constructed system as described by (9)
can be easily shown to be linear and shift invariant. In other words, if Aðr0Þ is shifted spatially by �r,
the response CðrÞ will be shifted by the same distance in the same direction because
jr0 � rj ¼ ctmax � rd must hold. Therefore, (9) can be rewritten as

CðrÞ ¼ AðrÞ � hðrÞ (10)

where hðrÞ is the system impulse responseVthe response of the constructed system to a point PA
source located at the originVand � represents 3-D convolution. When the system input is the 3-D
delta function, hðrÞ is the system output

hðrÞ ¼ �
jr0�rj¼ctmax�rd

�3ðr0Þd2r0 (11)

or

hðrÞ ¼ �� jrj � ctmax þ rdð Þ: (12)

Based on (10), AðrÞ can be calculated by a simplified Wiener deconvolution method [21]

eAðWÞ ¼ eCðWÞehðWÞ � 1þ �=jehðWÞj2� � (13)

where eAðWÞ, ehðWÞ, and eCðWÞ are the 3-D Fourier transforms of AðrÞ, hðrÞ, and CðrÞ, respectively;
and � is a constant (adjustable according to applications).

To summarize, the DR algorithm consists of two steps: First, construct CðrÞ based on (3) and (5);
second, calculate AðrÞ by (13). It is worth noting again that DR is an approximate algorithm because
(9) is approximated from (6). Smaller tissue volumes in comparison with the detection radius result
in less error. It has also been shown that the optimal value of tmax is 2rd=c (as used in the following
experiments), where DR provides the fastest calculation while maintaining good image quality [19].

3.2. Physical Meaning
The physical meanings of the key formulas in this DR algorithm are explained here. The function

Sðrd ; tÞ, as defined in (3), can be understood as the processed time-domain PA signal, which is
proportional to the velocity potential multiplied by the time of arrival [20]. It is due to the integration
of AðrÞ over a spherical shell, as shown in (4). Then Sðrd ; tÞ is transformed to CðrÞ by (5). The
value of CðrÞ at position r corresponds to the signal S processed from the pressure p received by
the r-direction transducer, located at position r � rd=jrj, at time ðctmax � jrjÞ=c. In other words, the
value of CðrÞ at position r corresponds to the tissue lying on a spherical surface whose center is
r � rd=jrj and whose radius is ctmax � jrj, as shown in Fig. 1. This transformation allows us to merge
two variables ðrd ; tÞ into a single variable r.

According to (10), CðrÞ approximates to the convolution of AðrÞ and hðrÞ when each acoustic
detector receives PA signals within a narrow cone. As shown in (12), hðrÞ approaches infinity on the
sphere whose center is the origin and whose radius is ctmax � rd , and equals zero at other places.
Based on the characteristics of the delta function and the origin-symmetric shape of hðrÞ, it is easy

)
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)
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to derive that AðrÞ � hðrÞ at position r equals to the integration of AðrÞ over a sphere whose center is
r and radius is ctmax � rd , as shown in Fig. 1.

In short, CðrÞ and AðrÞ � hðrÞ correspond to integrations on two spherical surfaces that do not
perfectly overlap and are thereby only approximately equal. This misalignment is the physical origin
of the error in the DR algorithm. It is also worth mentioning that these two spheres are tangential on
the acoustic axis of each acoustic detector in the direction of �r (or r). If the tissue volume is
relatively small, the mismatch between these two spheres within the tissue will also be small, and so
will be the error of this DR algorithm. This explanation is consistent with the conclusion of the
previous mathematical derivation.

While the integration spherical surface of CðrÞ has a radius of curvature dependent on variable r,
the integration spherical surface of AðrÞ � hðrÞ has a constant radius of curvature once tmax is set.
We can exactly match the approximate spherical surface with the original spherical surface at one
position. If the tissue volume is centered within the detection surface, it is reasonable to set the
matching position at the origin by choosing ctmax ¼ 2rd .

One can further approximate the integration spherical shells to planes orthogonal to the acoustic
axis [22], which is tantamount to a zero-order Taylor expansion of the cosine function of the
acoustic detection angle. Although such an approximation reduces the spherical Radon transform
to the planar counterpart, errors in the reconstructed images can be severe unless the tissue
volume is extremely small.

3.3. Discrete Implementation
Here, we describe how to implement the DR algorithm in the most common 2-D applications,

where PA signals are detected along a circle. The transducer used here should receive signals from
the focal plane and reject out-of-plane signals because the acoustic detection is cylindrically
focused. In this case, the convolution in (10) will approximately hold true in the 2-D case (r is
reduced to a 2-D position vector).

During detection, the generated acoustic signal pðrd ; tÞ, in which rd is reduced to follow a circle, is
sampled in both the space and time domains. Thus, the detected pðrd ; tÞ can be represented by an

Fig. 1. Detection geometry and PA signal integration.
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Na � Nt matrix, where Na is the number of detection angles, and Nt is the number of sampled time
points at each detection angle. Also, Sðrd ; tÞ is represented by an Na � Nt matrix.

Suppose we want to reconstruct an image with the resolution of N � N (stored as an AðrÞ
matrix), which represents a spatial size of a� a (located at the center of the detection circle). hðrÞ
can be represented by a matrix corresponding to the spatial size of 2rd � 2rd (here, ctmax ¼ 2rd ).
Since the AðrÞ matrix and hðrÞ matrix will be convolved, each of their elements should represent
the same discrete space interval. Therefore, hðrÞ should be constructed as a ðN � 2rd=aÞ �
ðN � 2rd=aÞ matrix, and CðrÞ, which is the convolution of AðrÞ and hðrÞ, should be constructed
as a ½N � ð2rd=aþ 1Þ � 1� � ½N � ð2rd=aþ 1Þ � 1� matrix. While calculating an element in the CðrÞ
matrix, the spatial coordinate of this element is transformed to the corresponding coordinate in the
Sðrd ; tÞ matrix, and then, the value of the nearest Sðrd ; tÞ element is chosen (bilinear interpolation
can be used for better accuracy at the cost of computation time). After all the elements of the CðrÞ
matrix are calculated, the AðrÞ matrix, namely, the to-be-reconstructed image, can be obtained by
using deconvolution.

The main steps in the DR algorithm are constructing CðrÞ and deconvolution. To speed up the
algorithm, hðrÞ and the relationship between the variables of CðrÞ and Sðrd ; tÞ can be precalculated.
The size of theCðrÞmatrix is on the order ofN2; therefore, constructingCðrÞ has a time complexity of
�ðN2Þ. The deconvolution step involves fast Fourier transformation (FFT), division in the frequency
domain, and inverse FFT (IFFT). The time complexity of the division is �ðN2Þ, and that of both FFT
and IFFT is �ðN2logNÞ. Thus, in total, the DR algorithm has a time complexity of �ðN2logNÞ.

In comparison, back-projection algorithms and the delay-and-sum algorithm, i.e., two kinds of
commonly used time-domain algorithms, add up all the Na detected signals (with or without
processing in the time domain) at each pixel of reconstructed image. Therefore, they have a time
complexity of �ðNaN2Þ. Considering that Na is normally of the same order as N for good image
quality, the time complexity of these algorithms can be written as �ðN3Þ. Therefore, the DR
algorithm is much faster than back-projection algorithms and the delay-and-sum algorithm,
especially when reconstructing high-resolution images. Moreover, as far as we know, the available
frequency-domain algorithms for circular geometry either use a similar projection strategy [15] as
these time-domain algorithms or calculate eAðWÞ based on Bessel and Hankel functions [23]. They
are even more time consuming and are, in fact, rarely used in practice.

4. Results and Discussion
The DR algorithm was applied to in vivo mouse brain imaging. The head of a mouse was depilated
and then imaged with intact skull and skin. The experimental setup, as shown in Fig. 2, was similar to
that of [17]. The Nd:YAG laser (LOTIS II LS-2137/2) generated pulses with a wavelength of 532 nm,
a width of 16 ns, and a repetition rate of 10 Hz. PA signals were received by a 512-element circular
transducer array whose diameter was 5 cm. The center frequency of the transducer was 5 MHz, and
the bandwidth was greater than 80%. The signals were amplified, sampled at 40 MHz, and
transferred to a computer for processing by the signal acquisition system.

The received PA signals (after deconvolving the transducer impulse response) are shown in
Fig. 3(a). The two axes denote time and detection angle; the grayscale denotes normalized signal
amplitude. The constructed space function CðrÞ (also normalized) in the DR algorithm is shown in
Fig. 3(b). Here, the parameter tmax is set to 2rd=c, and only the signals during 10–33 �s are used.

Fig. 4(a) and (b) show the images reconstructed by the exact back-projection algorithm [15] and
the DR algorithm, respectively, when signals from all 512 detection angles are used. Then, we
tested the robustness of these two algorithms by reducing the number of angles uniformly around
the detection circle. Fig. 4(c) and (d) show the images reconstructed over 128 angles (selected
every fourth one from the 512 angles). Fig. 4(e) and (f) show the images reconstructed over
64 angles. For comparison, we opened the skin of the mouse brain after PA imaging and took a
photograph of the cerebral cortex [see Fig. 4(g)].

When reconstructed over 512 angles, the results of both algorithms are nearly identical and agree
well with the photograph. The DR algorithm outperforms the back-projection algorithm when using
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Fig. 2. Experimental setup.

Fig. 3. (a) Received PA signals and (b) constructed space function CðrÞ.
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signals from fewer angles. It can be seen that the reconstructed image of the DR algorithm over
128 angles is as good as the image reconstructed over 512 angles, while the back-projection
algorithm’s result suffers from many vessel-like artifacts. When reconstructed over 64 angles, the
image from the back-projection algorithm has very strong vessel-like artifacts that obscure real
vessels. The image from the DR algorithm is blurred but generally better.

Here, we explain why the DR algorithm performs better. The exact back-projection algorithm uses
an inverse formula, which ideally requires knowledge of the detected signals at every position of the
detection circle; in practice, one can detect signals from only a limited number of angles. The
back-projection algorithm does not project the undetected signals by assuming them to be zero.
This assumption is in fact not true, and it introduces large errors if detection angles are sparse. In
contrast, the DR algorithm is based on a valid forward model given by (10). The effectiveness of this
forward model will not be affected by the number of detection angles. In fact, in CðrÞ only the
elements perfectly matching with the measurement points are exactly known. If the detection angles
are too sparse, this model will be ill-conditioned and lead to unstable solutions, but it is a better
starting point than an invalid inverse formula. Moreover, the DR algorithm’s forward model is based
on convolution, which can be directly and quickly solved using a deconvolution method without
iterative calculations normally included in most forward-model-based methods. In our deconvolu-
tion, the unmeasured elements in CðrÞ are estimated by the detected signals. The solution is not a
least-squares one but is close.

The DR algorithm assumes, as mentioned above, that the object dimension is relatively small
compared with the detection circle. In our experiment, the cross section of the mouse head is
approximately elliptically shaped with a major axis of 2 cm, which is not much less than the
detection diameter (5 cm). However, most vessels are within a 0:6� 0:8 cm2 region, roughly
centered within the detection circle, and are clearly imaged. In practice, if an object is so large that
the DR algorithm cannot reconstruct the full cross section clearly, we can limit the region of interest
at the detection center for better image quality.

To compare the speeds of the back-projection and DR algorithms, we reconstructed images of a
2� 2 cm2 region (at the center of the transducer array) with different numbers of pixels. In practical

Fig. 4. In vivo and noninvasive reconstructed images using (a) back-projection over 512 angles,
(b) deconvolution reconstruction over 512 angles, (c) back-projection over 128 angles, (d) de-
convolution reconstruction over 128 angles, (e) back-projection over 64 angles, and (f) deconvolution
reconstruction over 64 angles. (g) Photograph of the mouse cerebral cortex taken after imaging.
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applications, we reconstruct images with more pixels if we can achieve better spatial resolution;
otherwise, adding pixels is meaningless because the added pixels contain little new spatial
information. Moreover, more detection angles are normally required for better spatial resolution.
Therefore, in order to investigate the calculation efficiencies of these two algorithms with different
requirements of spatial resolution, the number of detection angles and the pixel resolution of
reconstructed images in our calculation were varied simultaneously. In other words, we used
signals from N detection angles to reconstruct an N � N image and recorded the time cost of each
algorithm (Intel Core2 Duo CPU@3.00GHz, Matlab R2009a), where N was chosen to vary from
64, 128, 256, to 512. The results are shown in Fig. 5.

It can be seen that the time cost of the DR algorithm is much smaller than that of the back-
projection algorithm. For each algorithm, the trend of increased time cost with N is consistent with
the time complexity analysis in Section 3.3. When N ¼ 512, the DR algorithm is about ten times
faster than the back-projection algorithm. It can be predicted that the speed advantage of the DR
algorithm is greater when N 9 512. Moreover, according to these data, real-time imaging is possible
only if N 	 256 (in our system) if the DR algorithm is used. Since the DR algorithm presents
stronger robustness for sparse detection angles, it should be preferably considered for real-time PA
imaging in circular geometry.

5. Conclusion
Based on previous simulations, this work supplements the DR algorithm theoretically and validates
it experimentally. The DR algorithm uses a convolution-based forward model, which is more
effective than the inverse formula for sparse detection angles. Moreover, this model can be quickly
solved by using a deconvolution-based method. Experimental results show that the DR algorithm
provides image quality that is nearly identical to that of exact back-projection algorithm when using
signals detected from 512 angles. When using 128 and 64 angles, the DR algorithm provides
better images without vessel-like artifacts. It is also shown that the DR algorithm runs faster,
agreeing well with the time complexity analysis. When designing a real-time PAT system, the
number of detection angles cannot be very large, and the image-reconstruction algorithm should
be fast; therefore, the DR algorithm becomes a good choice. In addition, by utilizing the DR
algorithm in PAT systems, we can use fewer measurements for given image quality, thereby
reducing experimental cost.

Fig. 5. Time costs of the back-projection algorithm and deconvolution reconstruction algorithm when
reconstructing N � N images using signals from N detection angles.
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