63 research outputs found

    Recent Development of the Synthesis and Engineering Applications of One-Dimensional Boron Nitride Nanomaterials

    Get PDF
    One-dimensional (1D) nanomaterials with novel photoelectric, magnetic, mechanical, and electronic transport properties have long been the research focus throughout the world. Herein, the recent achievements in preparation of 1D boron nitride nanomaterials, including nanotubes, nanowires, nanoribbons, nanorods, and nanofibres are reviewed. As the most intriguing and researched polymorph, boron nitride nanotubes (BNNTs) are introduced thoroughly involving their functionalization and doping. The electronics and engineering applications of 1D boron nitride nanomaterials are illustrated in nanoscale devices, hydrogen storage, polymer composites, and newly developed biomedical fields in detail

    Inhibition of RhoA-Subfamily GTPases Suppresses Schwann Cell Proliferation Through Regulating AKT Pathway Rather Than ROCK Pathway

    Get PDF
    Inhibiting RhoA-subfamily GTPases by C3 transferase is widely recognized as a prospective strategy to enhance axonal regeneration. When C3 transferase is administered for treating the injured peripheral nerves, Schwann cells (SCs, important glial cells in peripheral nerve) are inevitably impacted and therefore SC bioeffects on nerve regeneration might be influenced. However, the potential role of C3 transferase on SCs remains elusive. Assessed by cell counting, EdU and water-soluble tetrazolium salt-1 (WST-1) assays as well as western blotting with PCNA antibody, herein we first found that CT04 (a cell permeable C3 transferase) treatment could significantly suppress SC proliferation. Unexpectedly, using Y27632 to inhibit ROCK (the well-accepted downstream signal molecule of RhoA subfamily) did not impact SC proliferation. Further studies indicated that CT04 could inactivate AKT pathway by altering the expression levels of phosphorylated AKT (p-AKT), PI3K and PTEN, while activating AKT pathway by IGF-1 or SC79 could reverse the inhibitory effect of CT04 on SC proliferation. Based on present data, we concluded that inhibition of RhoA-subfamily GTPases could suppress SC proliferation, and this effect is independent of conventional ROCK pathway but involves inactivation of AKT pathway

    Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice

    Get PDF
    Pre-harvest sprouting (PHS) or vivipary in cereals is an important agronomic trait that results in significant economic loss. A considerable number of mutations that cause PHS have been identified in several species. However, relatively few viviparous mutants in rice (Oryza sativa L.) have been reported. To explore the mechanism of PHS in rice, we carried out an extensive genetic screening and identified 12 PHS mutants (phs). Based on their phenotypes, these phs mutants were classified into three groups. Here we characterize in detail one of these groups, which contains mutations in genes encoding major enzymes of the carotenoid biosynthesis pathway, including phytoene desaturase (OsPDS), ζ-carotene desaturase (OsZDS), carotenoid isomerase (OsCRTISO) and lycopene β-cyclase (β-OsLCY), which are essential for the biosynthesis of carotenoid precursors of ABA. As expected, the amount of ABA was reduced in all four phs mutants compared with that in the wild type. Chlorophyll fluorescence analysis revealed the occurrence of photoinhibition in the photosystem and decreased capacity for eliminating excess energy by thermal dissipation. The greatly increased activities of reactive oxygen species (ROS) scavenging enzymes, and reduced photosystem (PS) II core proteins CP43, CP47 and D1 in leaves of the Oscrtiso/phs3-1 mutant and OsLCY RNAi transgenic rice indicated that photo-oxidative damage occurred in PS II, consistent with the accumulation of ROS in these plants. These results suggest that the impairment of carotenoid biosynthesis causes photo-oxidation and ABA-deficiency phenotypes, of which the latter is a major factor controlling the PHS trait in rice

    Pemetrexed plus Platinum as the First-Line Treatment Option for Advanced Non-Small Cell Lung Cancer: A Meta-Analysis of Randomized Controlled Trials

    Get PDF
    To compare the efficacy and toxicities of pemetrexed plus platinum with other platinum regimens in patients with previously untreated advanced non-small cell lung cancer (NSCLC). Methods: A meta-analysis was performed using trials identified through PubMed, EMBASE, and Cochrane databases. Two investigators independently assessed the quality of the trials and extracted data. The outcomes included overall survival (OS), progression-free survival (PFS), response rate (RR), and different types of toxicity. Hazard ratios (HRs), odds ratios (ORs) and their 95% confidence intervals (CIs) were pooled using RevMan software. Results: Four trials involving 2,518 patients with previously untreated advanced NSCLC met the inclusion criteria. Pemetrexed plus platinum chemotherapy (PPC) improved survival compared with other platinum-based regimens (PBR) in patients with advanced NSCLC (HR = 0.91, 95% CI: 0.83–1.00, p = 0.04), especially in those with non-squamous histology (HR = 0.87, 95% CI: 0.77–0.98, p = 0.02). No statistically significant improvement in either PFS or RR was found in PPC group as compared with PBR group (HR = 1.03, 95% CI: 0.94–1.13, p = 0.57; OR = 1.15, 95% CI: 0.95–1.39, p = 0.15, respectively). Compared with PBR, PPC led to less grade 3–4 neutropenia and leukopenia but more grade 3–4 nausea. However, hematological toxicity analysis revealed significant heterogeneities. Conclusion: Our results suggest that PPC in the first-line setting leads to a significant survival advantage with acceptable toxicities for advanced NSCLC patients, especially those with non-squamous histology, as compared with other PRB. PPC could be considered as the first-line treatment option for advanced NSCLC patients, especially those with non-squamous histology

    A Single E627K Mutation in the PB2 Protein of H9N2 Avian Influenza Virus Increases Virulence by Inducing Higher Glucocorticoids (GCs) Level

    Get PDF
    While repeated infection of humans and enhanced replication and transmission in mice has attracted more attention to it, the pathogenesis of H9N2 virus was less known in mice. PB2 residue 627 as the virulent determinant of H5N1 virus is associated with systemic infection and impaired TCR activation, but the impact of this position in H9N2 virus on the host immune response has not been evaluated. In this study, we quantified the cellular immune response to infection in the mouse lung and demonstrate that VK627 and rTsE627K infection caused a significant reduction in the numbers of T cells and inflammatory cells (Macrophage, Neutrophils, Dendritic cells) compared to mice infected with rVK627E and TsE627. Further, we discovered (i) a high level of thymocyte apoptosis resulted in impaired T cell development, which led to the reduced amount of mature T cells into lung, and (ii) the reduced inflammatory cells entering into lung was attributed to the diminished levels in pro-inflammatory cytokines and chemokines. Thereafter, we recognized that higher GCs level in plasma induced by VK627 and rTsE627K infection was associated with the increased apoptosis in thymus and the reduced pro-inflammatory cytokines and chemokines levels in lung. These data demonstrated that VK627 and rTsE627K infection contributing to higher GCs level would decrease the magnitude of antiviral response in lung, which may be offered as a novel mechanism of enhanced pathogenicity for H9N2 AIV

    Evaluation Method for the Liquefaction Potential Using the Standard Penetration Test Value Based on the CPTU Soil Behavior Type Index

    No full text
    Taking the project of the Su-xin highway treated by using the resonant compaction method as the reference, a new method for the evaluation of liquefaction potential is proposed based on the piezocone penetration test (CPTU) and the standard penetration test (SPT). The soil behavior type index (Ic) obtained from CPTUs and the standard penetration test index (N63.5), obtained from SPTs, are analyzed for saturated silty sand and silt. The analysis result reveals a linear relationship between N63.5 and Ic, given by N63.5=−18.8Ic+52.0. The larger the value of Ic is, the greater the viscosity of soil is, and the smaller the value of N63.5 is. According to the method, liquefaction assessment of saturated silty sand and silt foundation can be conducted by using N63.5 based on the Code of Seismic Design of Building. N63.5 is expressed by a single Ic, which is calculated from the CPTU data. Compared with existing evaluation methods, this method can provide continuous standard penetration test values, moreover, this method involves a simple calculation, and the results obtained using the method are reliable

    One-Step Route to Synthesize Multiwalled Carbon Nanotubes Filled with MgO Nanorods

    Get PDF
    Multiwalled carbon nanotubes filled with MgO nanorods were synthesized through the reaction of ethanol and Mg powder in the presence of TiO2 at 400C°. X-ray powder diffraction indicated that the sample was composed of graphite and cubic MgO. Transmission electron microscopy studies showed that multi-walled CNTs with the outer diameters of 70–130 nm were filled with discontinuous MgO nanorods whose diameter was in the range of 25–40 nm. The ratios of the band intensities (ID/IG=0.67) in Raman spectrum implied that carbon nanotubes had good crystallinity. The influence of correlative reaction factors on the morphology of the sample and the possible formation mechanism were discussed
    corecore