21 research outputs found
Forest plots for postoperative complications included wound complications, incisional hernia, bile leak, retained stones, bile duct injury and bleeding.
<p>CI: confidence interval; OR: odds ratio. A fixed effects model was used as no statistical heterogeneity across complications were observed.</p
Single Incision versus Conventional Laparoscopic Cholecystectomy Outcomes: A Meta-Analysis of Randomized Controlled Trials
<div><p>Background</p><p>Previous meta-analyses that compared the outcome of SILC and CLC have not presented consistent conclusions. This meta-analysis was performed after adding many recent RCTs, to clarify this issue.</p> <p>Methods</p><p>Relevant articles published in English were identified by searching PubMed, Embase, Web of Knowledge, and the Cochrane Controlled Trial Register from January 1997 to February 2013. Reference lists of the retrieved articles were reviewed to identify additional articles. Primary outcomes (postoperative pain scores, cosmetic score, and length of incision) and secondary outcomes (operating time, blood loss, conversion rates, postoperative complications, postoperative hospital stay, time to initial oral intake, and time to resume work) were pooled. Quantitative variables were calculated using the weighted mean difference (WMD), and qualitative variables were pooled using odds ratios (OR).</p> <p>Results</p><p>25 appropriate RCTs were identified from 2128 published articles. 1841 patients were treated, 944 with SILC and 897 with CLC. SILC was superior to CLC in cosmetic score (WMD = 1.155, <i>P</i><0.001), shorter length of incision (WMD = -3.285, <i>P</i> = 0.029), and postoperative pain within 12 h (VAS in 3-4 h, WMD = -0.704, <i>P</i> = 0.026; VAS in 6-8 h, WMD = -0.613, <i>P</i> = 0.010). CLC was superior to SILC in operating time (OT) (WMD = 13.613, <i>P</i><0.001) and need of additional instruments (OR = 7.448, <i>P</i><0.001). Other secondary outcomes were similar.</p> <p>Conclusions</p><p>SILC offered a better cosmetic result and less postoperative pain for patients with uncomplicated cholelithiasis or polypoid lesions of the gallbladder. However, SILC was associated with a longer OT and required additional instruments.</p> </div
Forest plots for primary outcomes included postoperative pain scores from four time points(A) cosmetic score (B) and length of incision (C).
<p>CI: confidence interval; WMD: weighted mean difference. Random effects models based on the DerSimonian & Laird methods were used as heterogeneity existed in all primary outcomes.</p
PRISMA flow diagram of the systematic article selection process.
<p>PRISMA flow diagram of the systematic article selection process.</p
Forest plots for intraoperative outcomes included operating time
<div><p>(A) <b>blood loss (B) conversion rate (C)</b>. </p>
<p>CI: confidence interval; WMD: weighted mean difference; OR: odds ratio. A fixed effect model was used as no statistical heterogeneity across conversion rate (C) was observed. Random effects models were used as heterogeneity existed in operating time (A) and blood loss (B).</p></div
Analysis of alternative splicing in chicken macrophages transfected with overexpression/knockdown of <i>RIP2</i> gene
Receptor-interacting protein 2 (RIP2) plays a critical role in the transduction of many signaling pathways and is associated with many diseases. Alternative splicing (AS) is an essential and ubiquitous regulatory mechanism of gene expression that contributes to distinct transcript variants and many different kinds of proteins. In this present study, we characterized genome-wide AS events in wild-type chicken macrophages (WT) and RIP2 overexpression/knockdown chicken macrophages (oeRIP2/shRIP2) by high-throughput RNA sequencing technology. A total of 1901, 2061, and 817 differentially expressed (DE) AS genes were identified in the comparison of oeRIP2 vs. WT, oeRIP2 vs. shRIP2, and shRIP2 vs. WT, respectively. These DE AS genes participated in many important KEGG pathways, including regulation of autophagy, Wnt signaling pathway, Ubiquitin mediated proteolysis, MAPK signaling pathway, and Focal adhesion, etc. In conclusion, this research provided a broad atlas of the genome-wide scale of the AS event landscape in RIP2 overexpression/knockdown and wild-type chicken macrophages. This research also provides the theoretical basis of the gene network related to RIP2.</p
Genome-wide characterization of circRNA expression profile in overexpression of <i>RIP2</i> chicken macrophages associated with avian pathogenic <i>E.coli</i> infection
Avian pathogenic E. coli (APEC) can cause localized and systemic diseases in poultry, threatening human health via meat or egg contamination and resulting in considerable economic losses to the poultry industry globally. Increasing evidence shows circRNAs were widely involved in various biological processes. However, the role of circRNAs in the host response against APEC infection, especially correlated with the regulation of RIP2, remains unclear. Herein, the RNAseq technology was used to identify the circRNA expression profiles in the overexpression of RIP2 macrophages with or without APEC infection. A total of 256 and 287 differentially expressed (DE) circRNAs were identified in the overexpression of RIP2 group (oeRIP2) vs. the wild-type group (WT) and oeRIP2 + APEC vs. APEC, respectively, whose parental genes were involved in MAPK signalling pathway, Wnt signalling pathway, focal adhesion, tight junction, and VEGF signalling pathways. Specifically, the key circRNAs, such as 5:814443-825127, 10:18922360-18928461, 2:8746306-8750639, and 2:124177751-124184063 might play a critical role in APEC infection and the regulation of RIP2. As a whole, these findings will facilitate understanding the molecular mechanism underlying circRNAs, especially related to the regulation of the RIP2 gene. Meanwhile, the study may offer new ideas to improve host immune and inflammatory response against APEC infection.</p
Table_6_Analysis of circRNA expression in chicken HD11 cells in response to avian pathogenic E.coli.XLSX
Avian pathogenic E. coli (APEC), one of the widespread zoonotic-pathogen, can cause a series of diseases collectively known as colibacillosis. This disease can cause thousands of million dollars economic loss each year in poultry industry and threaten to human health via meat or egg contamination. However, the detailed molecular mechanism underlying APEC infection is still not fully understood. Circular RNAs, a new type of endogenous noncoding RNA, have been demonstrated to involve in various biological processes. However, it is still not clear whether the circRNAs participate in host response against APEC infection. Herein, we utilized the high-throughput sequence technology to identify the circRNA expression profiles in APEC infected HD11 cells. A total of 49 differentially expressed (DE) circRNAs were detected in the comparison of APEC infected HD11 cells vs. wild type HD11 cells, which were involved in MAPK signaling pathway, Endocytosis, Focal adhesion, mTOR signaling pathway, and VEGF signaling pathway. Specifically, the source genes (BRAF, PPP3CB, BCL2L13, RAB11A, and TSC2) and their corresponding DE circRNAs may play a significant role in APEC infection. Moreover, based on ceRNA regulation, we constructed the circRNA-miRNA network and identified a couple of important regulatory relationship pairs related to APEC infection, including circRAB11A-gga-miR-125b-3p, circRAB11A-gga-miR-1696, and circTSC2-gga-miR-1649-5p. Results indicate that the aforementioned specific circRNAs and circRNA-miRNA network might have important role in regulating host immune response against APEC infection. This study is the first time to investigate the circRNAs expression profile and the biological function of the source genes of the identified DE circRNAs after APEC infection of chicken HD11 cells. These results would contribute to a better understanding of the molecular mechanisms in host response against APEC infection.</p
Table_5_Analysis of circRNA expression in chicken HD11 cells in response to avian pathogenic E.coli.XLS
Avian pathogenic E. coli (APEC), one of the widespread zoonotic-pathogen, can cause a series of diseases collectively known as colibacillosis. This disease can cause thousands of million dollars economic loss each year in poultry industry and threaten to human health via meat or egg contamination. However, the detailed molecular mechanism underlying APEC infection is still not fully understood. Circular RNAs, a new type of endogenous noncoding RNA, have been demonstrated to involve in various biological processes. However, it is still not clear whether the circRNAs participate in host response against APEC infection. Herein, we utilized the high-throughput sequence technology to identify the circRNA expression profiles in APEC infected HD11 cells. A total of 49 differentially expressed (DE) circRNAs were detected in the comparison of APEC infected HD11 cells vs. wild type HD11 cells, which were involved in MAPK signaling pathway, Endocytosis, Focal adhesion, mTOR signaling pathway, and VEGF signaling pathway. Specifically, the source genes (BRAF, PPP3CB, BCL2L13, RAB11A, and TSC2) and their corresponding DE circRNAs may play a significant role in APEC infection. Moreover, based on ceRNA regulation, we constructed the circRNA-miRNA network and identified a couple of important regulatory relationship pairs related to APEC infection, including circRAB11A-gga-miR-125b-3p, circRAB11A-gga-miR-1696, and circTSC2-gga-miR-1649-5p. Results indicate that the aforementioned specific circRNAs and circRNA-miRNA network might have important role in regulating host immune response against APEC infection. This study is the first time to investigate the circRNAs expression profile and the biological function of the source genes of the identified DE circRNAs after APEC infection of chicken HD11 cells. These results would contribute to a better understanding of the molecular mechanisms in host response against APEC infection.</p
Table_3_Analysis of circRNA expression in chicken HD11 cells in response to avian pathogenic E.coli.DOCX
Avian pathogenic E. coli (APEC), one of the widespread zoonotic-pathogen, can cause a series of diseases collectively known as colibacillosis. This disease can cause thousands of million dollars economic loss each year in poultry industry and threaten to human health via meat or egg contamination. However, the detailed molecular mechanism underlying APEC infection is still not fully understood. Circular RNAs, a new type of endogenous noncoding RNA, have been demonstrated to involve in various biological processes. However, it is still not clear whether the circRNAs participate in host response against APEC infection. Herein, we utilized the high-throughput sequence technology to identify the circRNA expression profiles in APEC infected HD11 cells. A total of 49 differentially expressed (DE) circRNAs were detected in the comparison of APEC infected HD11 cells vs. wild type HD11 cells, which were involved in MAPK signaling pathway, Endocytosis, Focal adhesion, mTOR signaling pathway, and VEGF signaling pathway. Specifically, the source genes (BRAF, PPP3CB, BCL2L13, RAB11A, and TSC2) and their corresponding DE circRNAs may play a significant role in APEC infection. Moreover, based on ceRNA regulation, we constructed the circRNA-miRNA network and identified a couple of important regulatory relationship pairs related to APEC infection, including circRAB11A-gga-miR-125b-3p, circRAB11A-gga-miR-1696, and circTSC2-gga-miR-1649-5p. Results indicate that the aforementioned specific circRNAs and circRNA-miRNA network might have important role in regulating host immune response against APEC infection. This study is the first time to investigate the circRNAs expression profile and the biological function of the source genes of the identified DE circRNAs after APEC infection of chicken HD11 cells. These results would contribute to a better understanding of the molecular mechanisms in host response against APEC infection.</p