55 research outputs found

    Nanomechanical characterization of carbon nanotube-polymer interfacial strength

    Get PDF
    The interfacial stress transfer between carbon nanotubes (CNTs) and polymer matrices plays a critical role in the mechanical performance of CNT-reinforced polymer nanocomposites. In this discussion, we present an experimental study of the mechanical strength of the interfaces formed by individual CNTs with poly(methyl methacrylate) (PMMA) and epoxy resin, respectively. The nanotube-polymer interfacial strength is characterized using an in-situ electron microscopy nanomechanical single-tube pull-out techniques. By pulling out individual tubes from polymer matrices using atomic force microscopic force sensors inside a high resolution electron microscope, both the pull-out force and the embedded tube length are measured with resolutions of a few nano-Newtons and nanometers, respectively. The measurements reveal the shear-lag effects on both CNT–PMMA and CNT–epoxy interfaces. The results show that the maximum pull-out load of CNT-epoxy interfaces is ~40% higher than that of CNT–PMMA interfaces. This study contributes to a better understanding of the interfacial stress transfer in nanofiber-reinforced polymer nanocomposites

    High preoperative white blood cell count determines poor prognosis and is associated with an immunosuppressive microenvironment in colorectal cancer

    Get PDF
    BackgroundThe correlation between high white blood cell (WBC) count and poor prognosis has been identified in various types of cancer; however, the clinical significance and immune context of WBC count in colorectal cancer remains unclear.MethodsBetween February 2009 and November 2014, 7,433 patients at the Shanghai Cancer Center who had undergone elective surgery for colorectal cancer were enrolled in this retrospective cohort study. Patients were divided into two groups: low and high preoperative WBC groups. Propensity score matching was used to address the differences in baseline characteristics. The Kaplan–Meier method and Cox regression analysis were used to identify independent prognostic factors in colorectal cancer patients. Tumor-infiltrating immune cells in the high and low preoperative WBC groups were compared using immunohistochemical staining.ResultsOf the 7,433 patients who underwent colorectal cancer surgery and were available for analysis, 5,750 were included in the low preoperative WBC group, and 1,683 were included in the high preoperative WBC group. After propensity score matching, 1,553 patients were included in each group. Kaplan–Meier survival curves showed that a high preoperative WBC count was associated with a decreased overall survival (P = 0.002) and disease-free survival (P = 0.003), and that preoperative WBC count was an independent risk factor for overall survival (hazard ratio, 1.234; 95% confidence interval, 1.068–1.426; P = 0.004) and disease-free survival (hazard ratio, 1.210; 95% confidence interval, 1.047–1.397, P = 0.01). Compared to the low preoperative WBC group, the high preoperative WBC group exhibited higher expression of regulatory T cells (P = 0.0034), CD68+ macrophages (P = 0.0071), and CD66b+ neutrophils (P = 0.0041); increased expression of programmed cell death protein 1 (P = 0.005) and programmed cell death ligand 1 (P = 0.0019); and lower expression of CD8+ T cells (P = 0.0057) in colorectal cancer patients.ConclusionsOur research indicates that a high preoperative WBC count is a prognostic indicator in colorectal cancer patients and is associated with an immunosuppressive tumor microenvironment, which could aid in future risk stratification

    Carbon nanotubes adhesion and nanomechanical behavior from peeling force spectroscopy

    Get PDF
    Applications based on Single Walled Carbon Nanotube (SWNT) are good example of the great need to continuously develop metrology methods in the field of nanotechnology. Contact and interface properties are key parameters that determine the efficiency of SWNT functionalized nanomaterials and nanodevices. In this work we have taken advantage of a good control of the SWNT growth processes at an atomic force microscope (AFM) tip apex and the use of a low noise (1E-13 m/rtHz) AFM to investigate the mechanical behavior of a SWNT touching a surface. By simultaneously recording static and dynamic properties of SWNT, we show that the contact corresponds to a peeling geometry, and extract quantities such as adhesion energy per unit length, curvature and bending rigidity of the nanotube. A complete picture of the local shape of the SWNT and its mechanical behavior is provided

    Buyang Huanwu Decoction Attenuates Infiltration of Natural Killer Cells and Protects Against Ischemic Brain Injury

    Get PDF
    Background/Aims: Natural killer (NK) cells are among the first immune cells that respond to an ischemic insult in human brains. The infiltrated NK cells damage blood-brain barrier (BBB) and exacerbate brain infarction. Buyang Huanwu Decoction (BHD), a classic Chinese traditional herbal prescription, has long been used for the treatment of ischemic stroke. The present study investigated whether BHD can prevent brain infiltration of NK cells, attenuate BBB disruption and improve ischemic outcomes. Methods: Transient focal cerebral ischemia was induced in rats by a 60-minute middle cerebral artery occlusion, and BHD was orally administrated at the onset of reperfusion, 12 hours later, then twice daily. Assessed parameters on Day 3 after ischemia were: neurological and motor functional deficits through neurological deficit score and rotarod test, respectively; brain infarction through TTC staining; BBB integrity through Evans blue extravasation; matrix metalloproteinase-2/9 activities through gelatin zymography; tight junction protein, nuclear factor-kB (NF-kB) p65 and phospho-p65 levels through Western blotting; NK cell brain infiltration and CXCR3 levels on NK cells through flow cytometry; interferon-Îł production through ELISA; CXCL10 mRNA levels through real-time PCR; CXCL10 expression and p65 nuclear translocation through immunofluorescence staining. Results: BHD markedly reduced brain infarction, improved rotarod performance, and attenuated BBB breakdown. Concurrently, BHD attenuated the upregulation of matrix metalloproteinase-2/9 activities and the degradation of tight junction proteins in the ischemic brain. Infiltration of NK cells was observed in the ischemic hemisphere, and this infiltration was blunted by treatment with BHD. BHD suppressed brain ischemia-induced interferon-Îł and chemokine CXCL10 production. Furthermore, BHD significantly reduced the expression of CXCR3 on brain-infiltrated NK cells. Strikingly, BHD did not affect NK cell levels or its CXCR3 expression in the spleen or peripheral blood after brain ischemia. The nuclear translocation of NF-kB p65 and phospho-p65 in the ischemic brain was inhibited by BHD. Conclusion: Our findings suggest that BHD prevents brain infiltration of NK cells, preserves BBB integrity and eventually improves ischemic outcomes. The inhibitory effects of BHD on NK cell brain invasion may involve its ability of suppressing NF-kB-associated CXCL10-CXCR3-mediated chemotaxis. Notably, BHD only suppresses NK cells and their CXCR3 expression in the ischemic brain, but not those in periphery

    A synergistic ozone-climate control to address emerging ozone pollution challenges

    Get PDF
    Tropospheric ozone threatens human health and crop yields, exacerbates global warming, and fundamentally changes atmospheric chemistry. Evidence has pointed toward widespread ozone increases in the troposphere, and particularly surface ozone is chemically complex and difficult to abate. Despite past successes in some regions, a solution to new challenges of ozone pollution in a warming climate remains unexplored. In this perspective, by compiling surface measurements at ∌4,300 sites worldwide between 2014 and 2019, we show the emerging global challenge of ozone pollution, featuring the unintentional rise in ozone due to the uncoordinated emissions reduction and increasing climate penalty. On the basis of shared emission sources, interactive chemical mechanisms, and synergistic health effects between ozone pollution and climate warming, we propose a synergistic ozone-climate control strategy incorporating joint control of ozone and fine particulate matter. This new solution presents an opportunity to alleviate tropospheric ozone pollution in the forthcoming low-carbon transition.This study was supported by the Research Grants Council of Hong Kong Special Administrative Region via General Research Funds (HKBU 15219621 and PolyU 15212421) and a Theme-based Research Scheme (T24-504/17-N). The authors acknowledge the support of the Australia–China Centre on Air Quality Science and Management. R.S. acknowledges support from ANID/FONDAP/1522A0001. D.S. thanks the program of Coordination for the Improvement of Higher Education Personnel (CAPES) (436466/2018-0). X.X. acknowledges funding from the Natural Science Foundation of China (41330422) and the Chinese Academy of Meteorological Sciences (2020KJ003). K.L. is supported by the Natural Science Foundation of China (42205114), Jiangsu Carbon Peak and Neutrality Science and Technology Innovation fund (BK20220031), and the Startup Foundation for Introducing Talent of NUIST. We sincerely appreciate all the organizations and programs introduced in the section “experimental procedures” for freely providing ozone data. We thank Dr. Owen Cooper (University of Colorado, Boulder, and NOAA) for insightful guidance and discussion. No organization or program will be responsible for the results generated from their data.Peer reviewe

    Advanced Fuzzy-Logic-Based Traffic Incident Detection Algorithm

    No full text
    This study demonstrates an incident detection algorithm that uses the meteorological and traffic parameters for improving the poor performance of the automatic incident detection (AID) algorithms under extreme weather conditions and for efficiently using the meteorological devices on advanced freeways. This algorithm comprises an incident detection module that is based on learning vector quantization (LVQ) and a meteorological influencing factor module. Field data are obtained from the Yuwu freeway in Chongqing, China, to verify the algorithm. Further, the performance of this algorithm is evaluated using commonly used criteria such as mean time to detection (MTTD), false alarm rate (FAR), and detection rate (DR). Initially, an experiment is conducted for selecting the algorithm architecture that yields the optimal detection performance. Additionally, a comparative experiment is performed using the California algorithm, exponential smoothing algorithm, standard normal deviation algorithm, and McMaster algorithm. The experimental results demonstrate that the algorithm proposed in this study is characterized by high DR, low FAR, and considerable suitability for applications in AID

    Internal solitary wave transformation over the slope: Asymptotic theory and numerical simulation

    No full text
    The propagation and evolution of long nonlinear internal solitary waves over slope-shelf topography is theoretically and numerically studied in a two-layer fluid system of finite depth. The variable Korteweg–de Vries (vKdV) and variable extended Korteweg–de Vries (veKdV) equations are derived for the weak and moderate nonlinear waves, respectively. The numerical method is developed from finite difference/volume (FD/FV) scheme to solve the nonlinear equations. The transformation of solitary waves is observed when they propagate past the slope. The elevation of rear face of the front wave grows with the increase of the slope inclination. The results also show that the transformed waves can be described by the steady solution of the corresponding theoretical model (vKdV, veKdV) by considering the depth condition beyond the shelf. Keywords: Internal solitary waves, Two-layer fluid system, Slope-shelf topography, Theoretical mode
    • 

    corecore