1,702 research outputs found

    Tapered Simplified Modal Method for Analysis of Non-rectangular Gratings

    Full text link
    The Simplified Modal Method (SMM) provides a quick and intuitive way to analyze the performance of gratings of rectangular shapes. For non-rectangular shapes, a version of SMM has been developed, but it applies only to the Littrow-mounting incidence case and it neglects reflection. Here, we use the theory of mode-coupling in a tapered waveguide to improve SMM so that it applies to non-rectangular gratings at arbitrary angles of incidence. Moreover, this new 'Tapered Simplified Modal Method' (TSMM) allows us to properly account for reflected light. We present here the analytical development of the theory and numerical simulations, demonstrating the validity of the method.Comment: 13 pages, 8 figure

    Signature Sequence of Intersection Curve of Two Quadrics for Exact Morphological Classification

    Full text link
    We present an efficient method for classifying the morphology of the intersection curve of two quadrics (QSIC) in PR3, 3D real projective space; here, the term morphology is used in a broad sense to mean the shape, topological, and algebraic properties of a QSIC, including singularity, reducibility, the number of connected components, and the degree of each irreducible component, etc. There are in total 35 different QSIC morphologies with non-degenerate quadric pencils. For each of these 35 QSIC morphologies, through a detailed study of the eigenvalue curve and the index function jump we establish a characterizing algebraic condition expressed in terms of the Segre characteristics and the signature sequence of a quadric pencil. We show how to compute a signature sequence with rational arithmetic so as to determine the morphology of the intersection curve of any two given quadrics. Two immediate applications of our results are the robust topological classification of QSIC in computing B-rep surface representation in solid modeling and the derivation of algebraic conditions for collision detection of quadric primitives

    Evaluating Anytime Algorithms for Learning Optimal Bayesian Networks

    Get PDF
    Exact algorithms for learning Bayesian networks guarantee to find provably optimal networks. However, they may fail in difficult learning tasks due to limited time or memory. In this research we adapt several anytime heuristic search-based algorithms to learn Bayesian networks. These algorithms find high-quality solutions quickly, and continually improve the incumbent solution or prove its optimality before resources are exhausted. Empirical results show that the anytime window A* algorithm usually finds higher-quality, often optimal, networks more quickly than other approaches. The results also show that, surprisingly, while generating networks with few parents per variable are structurally simpler, they are harder to learn than complex generating networks with more parents per variable.Peer reviewe

    Towards Efficient Path Query on Social Network with Hybrid RDF Management

    Full text link
    The scalability and exibility of Resource Description Framework(RDF) model make it ideally suited for representing online social networks(OSN). One basic operation in OSN is to find chains of relations,such as k-Hop friends. Property path query in SPARQL can express this type of operation, but its implementation suffers from performance problem considering the ever growing data size and complexity of OSN.In this paper, we present a main memory/disk based hybrid RDF data management framework for efficient property path query. In this hybrid framework, we realize an efficient in-memory algebra operator for property path query using graph traversal, and estimate the cost of this operator to cooperate with existing cost-based optimization. Experiments on benchmark and real dataset demonstrated that our approach can achieve a good tradeoff between data load expense and online query performance
    corecore