47 research outputs found
Pore Fluid Evolution Influenced by Volcanic Activities and Related Diagenetic Processes in a Rift Basin: Evidence from the Paleogene Medium-Deep Reservoirs of Huanghekou Sag, Bohai Bay Basin, China
Volcanic activities exert a significant influence on pore fluid property and related diagenetic processes that substantially controlled reservoirs quality. Analysis of Paleogene medium-deep sandstones on the Huanghekou Sag provides insight into relating the diagenetic processes to pore fluid property evolution influenced by volcanic activities. Three distinct types of pore fluids were identified on the basis of an integrated and systematic analysis including core and thin section observation, XRD, SEM, CL, and trace element. Alkaline aqueous medium environment occurred in E2s1+2 where volcanic activities have insignificant influence on pore fluids, evidenced by typical alkaline diagenetic events such as K-feldspar albitization, quartz dissolution, feldspar dissolution, and carbonate cementation. During the deposition of E3d3, influx of terrestrial freshwater and alteration of ferromagnesian-rich pore water result in the formation of mixing aqueous medium environment through volcanic eruption dormancy causing zeolite dissolution, clay mineral transformation, and K-feldspar albitization. Ferromagnesian-rich aqueous medium environment developed resulting from the intensive hydrolysis of the unstable ferromagnesian minerals formed due to intense volcanic activities during E3d1+2 and corresponding predominant diagenetic processes were characterized by the precipitation and dissolution of low-silica zeolites. Therefore, the differential properties of pore fluids caused various diagenetic processes controlling reservoir quality
Heterologous booster vaccination enhances antibody responses to SARS-CoV-2 by improving Tfh function and increasing B-cell clonotype SHM frequency
Heterologous prime-boost has broken the protective immune response bottleneck of the COVID-19 vaccines. however, the underlying mechanisms have not been fully elucidated. Here, we investigated antibody responses and explored the response of germinal center (GC) to priming with inactivated vaccines and boosting with heterologous adenoviral-vectored vaccines or homologous inactivated vaccines in mice. Antibody responses were dramatically enhanced by both boosting regimens. Heterologous immunization induced more robust GC activation, characterized by increased Tfh cell populations and enhanced helper function. Additionally, increased B-cell activation and antibody production were observed in a heterologous regimen. Libra-seq was used to compare the differences of S1-, S2- and NTD-specific B cells between homologous and heterologous vaccination, respectively. S2-specific CD19+ B cells presented increased somatic hypermutations (SHMs), which were mainly enriched in plasma cells. Moreover, a heterologous booster dose promoted the clonal expansion of B cells specific to S2 and NTD regions. In conclusion, the functional role of Tfh and B cells following SARS-CoV-2 heterologous vaccination may be important for modulating antibody responses. These findings provide new insights for the development of SARS-CoV-2 vaccines that induce more robust antibody response
Serum CA72-4 is specifically elevated in gout patients and predicts flares
Objectives Serum CA72-4 levels are elevated in some gout patients but this has not been comprehensively described. The present study profiled serum CA72-4 expression in gout patients and verified the hypothesis that CA72-4 is a predictor of future flares in a prospective gout cohort. Methods To profile CA72-4 expression, a cross-sectional study was conducted in subjects with gouty arthritis, asymptomatic hyperuricaemia, four major arthritis types (OA, RA, SpA, septic arthritis) and healthy controls. A prospective gout cohort study was initiated to test the value of CA72-4 for predicting gout flares. During a 6-month follow-up, gout flares, CA72-4 levels and other gout-related clinical variables were observed at 1, 3 and 6 months. Results CA72-4 was highly expressed in patients with gouty arthritis [median (interquartile range) 4.55 (1.56, 32.64) U/ml] compared with hyperuricaemia patients [1.47 (0.87, 3.29) U/ml], healthy subjects [1.59 (0.99, 3.39) U/ml] and other arthritis patients [septic arthritis, 1.38 (0.99, 2.66) U/ml; RA, 1.58 (0.95, 3.37) U/ml; SpA, 1.56 (0.98, 2.85) U/ml; OA, 1.54 (0.94, 3.34) U/ml; P 6.9 U/ml) was the strongest predictor of gout flares (hazard ratio = 3.889). Prophylactic colchicine was effective, especially for patients with high CA72-4 levels (P = 0.014). Conclusion CA72-4 levels were upregulated in gout patients who experienced frequent flares and CA72-4 was a useful biomarker to predict future flares
Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia
We conducted a genome-wide association study (GWAS) with replication in 36,180 Chinese individuals and performed further transancestry meta-analyses with data from the Psychiatry Genomics Consortium (PGC2). Approximately 95% of the genome-wide significant (GWS) index alleles (or their proxies) from the PGC2 study were overrepresented in Chinese schizophrenia cases, including ∼50% that achieved nominal significance and ∼75% that continued to be GWS in the transancestry analysis. The Chinese-only analysis identified seven GWS loci; three of these also were GWS in the transancestry analyses, which identified 109 GWS loci, thus yielding a total of 113 GWS loci (30 novel) in at least one of these analyses. We observed improvements in the fine-mapping resolution at many susceptibility loci. Our results provide several lines of evidence supporting candidate genes at many loci and highlight some pathways for further research. Together, our findings provide novel insight into the genetic architecture and biological etiology of schizophrenia
Preparation and Properties of RDX/Aluminum Composites by Spray-Drying Method
RDX/aluminum composites were prepared by the spray-drying method with F2602 as a binder. The morphology and covering effect of composites were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The effect of the processing parameters on the morphology of the samples was investigated. The impact sensitivity and thermal decomposition behavior of RDX/aluminum composites were also measured and analyzed. Optimal morphology of samples was achieved when the inlet temperature, nitrogen flow rate, and suspension feed flow rates were 80°C, 473 L·h-1, and 4.5 mL·min-1, respectively. In addition, RDX/aluminum composites with the same content were prepared by a coverage-mixing method for comparative analysis. Experimental results showed that the thermal sensitivity and the impact sensitivity of RDX/aluminum composites prepared by the spray-drying method were significantly lower than those of RDX/aluminum composites prepared by the coverage-mixing method
Epidemiological study of carbapenem-resistant Klebsiella pneumoniae
This research is aimed to study the resistance and molecular epidemiological characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP)
Analysis of the Complete Genomes of Enterovirus 71 Subtypes in China
Enterovirus 71 (EV-A71) is one of the most pathogens to hand, foot, and mouth disease (HFMD) as well as neurological complications in young children. Molecular characteristic of EV-A71 is important to prevent the virus outbreak. Here, the complete genomes of EV-A71 from China between 1998 and 2019 were downloaded from GenBank. The phylogenetic trees were developed by MEGA7.0 software, and the complete genetic epidemiological characteristics and amino acid mutations of EV-A71 from China were also analysed. The results showed that major epidemic EV-A71 subtype was C4b before 2004, while it turned to C4a after 2004 in mainland China, and C4 and B5 were major subtypes in Taiwan. VP1, VP4, 2C, 3C, 3D, and complete genome sequence can be used for virus genotyping, and VP1, VP4, and complete genomes have obvious advantages over other segments. There were many significant mutations in the viral complete genome sequence. This study indicated that the major C4 and B5 subtypes will contribute to the development of vaccines and drugs of EV-A71 for prevention and monitoring of EV-A71-associated HFMD in China
CO2 Monitoring and Background Mole Fraction at Zhongshan Station, Antarctica
Background CO2 mole fraction and seasonal variations, measured at Zhongshan station, Antarctica, for 2010 through 2013, exhibit the expected lowest mole fraction in March with a peak in November. Irrespective of wind direction, the mole fraction of CO2 distributes evenly after polluted air from station operations is removed from the data sets. The daily range of average CO2 mole fraction in all four seasons is small. The monthly mean CO2 mole fraction at Zhongshan station is similar to that of other stations in Antarctica, with seasonal CO2 amplitudes in the order of 384–392 µmol∙mol−1. The annual increase in recent years is about 2 µmol∙mol−1∙yr−1. There is no appreciable difference between CO2 mole fractions around the coast of Antarctica and in the interior, showing that CO2 observed in Antarctica has been fully mixed in the atmosphere as it moves from the north through the southern hemisphere
Fabrication and Characterization of Viton@FOX-7@Al Spherical Composite with Improved Thermal Decomposition Property and Safety Performance
To achieve a uniform distribution of the components and a better performance of aluminized composite explosives, Viton (dipolymers of hexafluoropropylene and vinylidene fluoride) @ FOX-7 (1,1-diamino-2,2-dinitroethylene) @Al microspheres and FOX-7/Viton@Al were synthesized by spray-drying strategy contrastively. Viton@FOX-7@Al owned porous and loose morphology and good sphericity with a retained crystal phase of FOX-7 and aluminum. The 23.56% fluorine content on Viton@FOX-7@Al surface indicated that Viton was completely coated on the surface of the particles. Nanosized aluminum (nAl) in Viton@FOX-7@Al had a certain catalytic activity on the thermal decomposition process of FOX-7 resulting in a depressed exothermic peak temperature and reduced apparent activation energy relative to nAl in FOX-7/Viton@Al. Because of the specific structure and the synergies between each individual component, Viton@FOX-7@Al showed reduced impact sensitivity and friction sensitivity than those of FOX-7/Viton@Al. In brief, Viton@FOX-7@Al with multilevel coating structure possessed comparatively low thermal decomposition energy requirement and improved safety performance