42 research outputs found

    Wigner distribution of twisted photons

    Get PDF
    We present the first experimental characterization of the azimuthal Wigner distribution of a photon. Our protocol fully characterizes the transverse structure of a photon in conjugate bases of orbital angular momentum (OAM) and azimuthal angle (ANG). We provide a test of our protocol by characterizing pure superpositions and incoherent mixtures of OAM modes in a seven-dimensional space. The time required for performing measurements in our scheme scales only linearly with the dimension size of the state under investigation. This time scaling makes our technique suitable for quantum information applications involving a large number of OAM states

    Multiplexing Free-Space Channels using Twisted Light

    Get PDF
    We experimentally demonstrate an interferometric protocol for multiplexing optical states of light, with potential to become a standard element in free-space communication schemes that utilize light endowed with orbital angular momentum (OAM). We demonstrate multiplexing for odd and even OAM superpositions generated using different sources. In addition, our technique permits one to prepare either coherent superpositions or statistical mixtures of OAM states. We employ state tomography to study the performance of this protocol, and we demonstrate fidelities greater than 0.98.Comment: 4 pages, 3 figure

    Rapid Generation of Light Beams Carrying Orbital Angular Momentum

    Get PDF
    We report a technique for encoding both amplitude and phase variations onto a laser beam using a single digital micro-mirror device (DMD). Using this technique, we generate Laguerre-Gaussian and vortex orbital-angular-momentum (OAM) modes, along with modes in a set that is mutually unbiased with respect to the OAM basis. Additionally, we have demonstrated rapid switching among the generated modes at a speed of 4 kHz, which is much faster than the speed regularly achieved by spatial light modulators (SLMs). The dynamic control of both phase and amplitude of a laser beam is an enabling technology for classical communication and quantum key distribution (QKD) systems that employ spatial mode encoding
    corecore