109 research outputs found

    Response of Fertile Tiller Characters and Seed Yield of \u3cem\u3eElymus sibiricus\u3c/em\u3e L. to Row Space Alteration

    Get PDF
    Elymus sibiricus L. cv chuancao NO.2 is widely planted in the eastern Tibetan Plateau of China. At present, the study about E. sibiricus L. seed yield has focused on the influence of fertilizing and harvest time on seed yield and its components. The response of fertile tiller characters and seed yield of E. sibiricus L. to different row space still has not been reported. This experiment analyzed the response of fertile tiller characters and seed yield to different row spaces, and presents the optimal spacing to increase seed yield and quality in the Northwest Plateau of Sichuan. The objective was to provide a scientific basis for large-scale seed production

    Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island

    Get PDF
    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus adding additional evidence for the possibility of organic matter oxidation as the main source of bicarbonate. Model results indicate that pH and Eh are relatively stable. The dissolution-precipitation trends of hematite, pyrite and calcite also coincide with those indicated by the conceptual model. A thorough sensitivity analysis has been performed for the most relevant microbial parameters as well as for initial and boundary POC and DOC concentrations. The results of such analysis indicate that computed concentrations of bicarbonate, sulfate and DOC are sensitive to most of the microbial parameters, including specific growth rates, half-saturation constants, proportionality coefficients and yield coefficients. Model results, however, are less sensitive to the yield coefficient of DOC to iron-reducer bacteria. The sensitivity analysis indicates that changes in fermentation microbial parameters affect the growth of the iron-reducer, thus confirming the interconnection of both microbial processes. Computed concentrations of bicarbonate and sulfate are found to be sensitive to changes in the initial concentration of POC and the boundary concentration of DOC, but they lack sensitivity to the initial concentration of DOC and the boundary concentration of POC. The explanation for such result is related to the fact that POC has a low mobility due to its large molecular weight. DOC, however, can migrate downwards. Although a coupled hydro-bio-geochemical 1-D model can reproduce the observed ''unexpected'' increase of concentrations of bicarbonate and sulfate at a depth of 70 m, further modeling work is required in order to obtain a similar conclusion under the more realistic two dimensional conditions of the fracture zone

    Modeling and simulation of extended ant colony labor division for benefit distribution of the all-for-one tourism supply chain with front and back decoupling

    Get PDF
    This paper takes the supply chain alliance under the decoupling of the front and back of the all-for-one tourism as the research object. Considering the three behavior stimuli of self-benefit, altruism, and invariance, this article resets the attributes such as environmental stimuli and response threshold of ants based on the characteristics of the all-for-one tourism supply chain with shared services as the core under the decoupling of the front and back. Moreover, it introduces dual intervention factors to coordinate the benefit distribution process of different member companies, takes fairness as the main goal of benefit distribution, introduces relative deprivation as the measure index of fairness, and establishes a dynamic all-for-one tourism supply chain alliance benefit distribution model. The experimental results show that the extended model has good flexibility of benefit distribution and realizes the fair distribution of supply chain benefits

    Drivers of population divergence and genetic variation in Elymus breviaristatus (Keng) Keng f. (Poaceae: Triticeae), an endemic perennial herb of the Qinghai-Tibet plateau

    Get PDF
    Elymus breviaristatus, a rare grass species with excellent resistance and ecological importance, is narrowly distributed on the Qinghai-Tibet plateau. Populations of E. breviaristatus are declining due to habitat fragmentation, and thus far, characteristics of genetic differentiation and adaptive responses to climate change remain poorly understood in this species. Here, we explored the genetic structure of 18 natural populations (269 individuals) in the transition zone between Tibet and the Hengduan Mountains using 15 expressed sequence tag (EST)-SSR primer pairs and identified possible barriers to gene flow that might have caused genetic discontinuities. Additional analyses were performed to identify the environmental factors affecting genetic diversity and to test whether the patterns of genetic variation among populations were more consistent with the isolation by distance (IBD) or isolation by environment (IBE) model. Multiple measures of genetic diversity revealed that intra-population genetic variation was low, while inter-population genetic variation was high. Clustering, structure, and principal coordinate analyses identified three genetic groups: (a) Eastern Qamdo, (b) Nagqu and Western Qamdo, and (c) Lhasa and Nyingchi. A clear physical barrier to gene flow was formed by the Yarlung Zangbo Grand Canyon and the Tanggula Mountains. We found that both IBD and IBE contributed to the observed patterns of genetic variation, and the IBE model played a leading role. In addition, precipitation-related variables, soil phosphorus content and soil K:P ratio significantly affected population genetic variation. Overall, our results emphasized the genetic fragility of E. breviaristatus populations and showed that this species requires attention, as future climate changes and human activities may further threaten its survival. In addition, the genetic differences among E. breviaristatus populations should be considered when formulating conservation measures for E. breviaristatus populations in the study area

    Several Critical Cell Types, Tissues, and Pathways Are Implicated in Genome-Wide Association Studies for Systemic Lupus Erythematosus

    Get PDF
    We aimed to elucidate the cell types, tissues, and pathways influenced by common variants in systemic lupus erythematosus (SLE). We applied a nonparameter enrichment statistical approach, termed SNPsea, in 181 single nucleotide polymorphisms (SNPs) that have been identified to be associated with the risk of SLE through genome-wide association studies (GWAS) in Eastern Asian and Caucasian populations, to manipulate the critical cell types, tissues, and pathways. In the two most significant cells’ findings (B lymphocytes and CD14+ monocytes), we subjected the GWAS association evidence in the Han Chinese population to an enrichment test of expression quantitative trait locus (QTL) sites and DNase I hypersensitivity, respectively. In both Eastern Asian and Caucasian populations, we observed that the expression level of SLE GWAS implicated genes was significantly elevated in xeroderma pigentosum B cells (P ≤ 1.00 × 10−6), CD14+ monocytes (P ≤ 2.74 × 10−4) and CD19+ B cells (P ≤ 2.00 × 10−6), and plasmacytoid dendritic cells (pDCs) (P ≤ 9.00 × 10−6). We revealed that the SLE GWAS-associated variants were more likely to reside in expression QTL in B lymphocytes (q1/q0 = 2.15, P = 1.23 × 10−44) and DNase I hypersensitivity sites (DHSs) in CD14+ monocytes (q1/q0 = 1.41, P = 0.08). We observed the common variants affected the risk of SLE mostly through by regulating multiple immune system processes and immune response signaling. This study sheds light on several immune cells and responses, as well as the regulatory effect of common variants in the pathogenesis of SLE

    Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    Get PDF
    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo

    Epigenome-wide association data implicates DNA methylation-mediated genetic risk in psoriasis

    Get PDF
    Abstract Background Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperproliferation and altered keratinocyte differentiation and inflammation and is caused by the interplay of genetic and environmental factors. Previous studies have revealed that DNA methylation (DNAm) and genetic makers are closely associated with psoriasis, and strong evidences have shown that DNAm can be controlled by genetic factors, which attracted us to evaluate the relationship among DNAm, genetic makers, and disease status. Methods We utilized the genome-wide methylation data of psoriatic skin (PP, N = 114) and unaffected control skin (NN, N = 62) tissue samples in our previous study, and we performed whole-genome genotyping with peripheral blood of the same samples to evaluate the underlying genetic effect on skin DNA methylation. Causal inference test (CIT) was used to assess whether DNAm regulate genetic variation and gain a better understanding of the epigenetic basis of psoriasis susceptibility. Results We identified 129 SNP-CpG pairs achieving the significant association threshold, which constituted 28 unique methylation quantitative trait loci (MethQTL) and 34 unique CpGs. There are 18 SNPs were associated with psoriasis at a Bonferoni-corrected P < 0.05, and these 18 SNPs formed 93 SNP-CpG pairs with 17 unique CpG sites. We found that 11 of 93 SNP-CpG pairs, composed of 5 unique SNPs and 3 CpG sites, presented a methylation-mediated relationship between SNPs and psoriasis. The 3 CpG sites were located on the body of C1orf106, the TSS1500 promoter region of DMBX1 and the body of SIK3. Conclusions This study revealed that DNAm of some genes can be controlled by genetic factors and also mediate risk variation for psoriasis in Chinese Han population and provided novel molecular insights into the pathogenesis of psoriasis
    corecore