164 research outputs found

    TROPIC: Transactional Resource Orchestration Platform In The Cloud

    Get PDF
    Realizing Infrastructure-as-a-Service (IaaS) cloud requires a control platform to orchestrate cloud resource provisioning, configuration, and decommissioning across a distributed set of diverse physical resources. This orchestration is challenging due to the rapid growth of data centers, high failure rate of commodity hardware and the increasing sophistication of cloud services. This paper presents the design and implementation of TROPIC, a highly available, transactional resource orchestration platform for building IaaS cloud infrastructures. TROPIC’s orchestration procedures that manipulate physical resources are transactional, automatically guaranteeing atomicity, consistency, isolation and durability of cloud operations. Through extensive evaluation of our prototype implementation, we demonstrate that TROPIC can meet production-scale cloud orchestration demands, while maintaining our design goals of safety, robustness, concurrency and high availability

    A few recent developments in fluidized bed technology applications for fuel conversion

    Get PDF
    In recent years, the process concepts based on two-stage and dual bed have been widely adopted in developing fuel conversion technologies including pyrolysis, combustion, gasification and catalytic cracking. These provide indeed advantages of, for example, easy operation and control, poly-generation of products, and high efficiency in elimination of undesirable product or pollutants. The so-called micro fluidized bed analyzer (MFBRA) has been newly developed to measure reaction rates at arbitrary temperatures, giving a great support to fundamental research and technology developments for fuel conversion. This report intends to summarize the involved new concepts, major fundamental understandings, pilot test and/or industrial demonstrations of a few newly developed fuel conversion technologies. Concretely, it will report fluidized bed two-stage gasification (FBTSG), dual fluidized bed pyrolysis combustion (DBPC), fluidized bed cracking gasification (FBCG) and MFBRA. The FBTSG technology separates fuel pyrolysis in a FB pyrolyzer and char gasification in a transport bed gasifier. The latter enables high-temperature tar cracking under catalysis of char to enable remarkably low tar content in the produced gas [1]. For fuel with high contents of water and nitrogen, the DBPC technology first removes fuel water and most fuel volatile in a pyrolyzer. This, on the one hand, ensures stable combustion of the fuel, and on the other hand facilitates NOx reduction by char and pyrolysis gas [2]. The FBCG technology separates the catalytic cracking of heavy feedstock for liquid and the gasification of char, the cokes formed on the catalyst surface, to produce syngas and also to regenerate the catalyst. By using micro fluidized bed, the MFBRA is newly developed to enable the on-line pulse feeding and rapid heating of particle reactant. It effectively suppresses the interfacial diffusion limitation and minimizes the intra-particle diffusion [3]. Thus, MFBRA provides isothermal reaction analysis in comparison with that in TGA based on programmed heating. REFERENCES 1. X. Zeng, et al. Pilot verification of a low-tar two-stage coal gasification process with a FB pyrolyzer and fixed bed gasifier. Applied Energy, 115, 9–16, 2014. 2. P. Dagaut, et al. Experiments and kinetic modeling study of NO-reburning by gases from biomass pyrolysis in a JSR. Energy & Fuels, 17(3), 608-613, 2003. 3. J. Yu, et al. Kinetics and mechanism of solid reactions in a micro fluidized bed reactor. AIChE Journal, 56, 2905-2912, 2010

    Editorial: Meiosis in plants: sexual reproduction, genetic variation and crop improvement

    Get PDF
    Meiosis is essential for sexual reproduction and required for the formation of sperm and egg; its central events are the associations between homologous chromosomes (homologs), including pairing, synapsis, recombination and segregation. During recombination, the exchange of DNA between homologs results in new allelic combinations between the parents and offspring and among individual progeny (Wang and Copenhaver, 2018). This genetic variation is the foundation for biodiversity and speciation. The phenotypic diversity that results from genetic variation is also used to develop new elite traits during commercial plant and animal breeding practices. Thus, understanding the molecular mechanisms drive and regulate plant meiosis can accelerate crop improvement, and provide a theoretical foundation for the development and maintenance of new agricultural varieties

    Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., <it>Saccharomyces cerevisiae </it>and <it>Drosophila melanogaster</it>), the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes.</p> <p>Results</p> <p>A high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE) genes (1,036) were also found to have up-regulated expression levels in meiocytes.</p> <p>Conclusion</p> <p>These findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.</p

    Light Spectrum Impacts on Growth, Molting, and Oxidative Stress Response of the Mud Crab Scylla paramamosain

    Get PDF
    An 8 weeks trial was performed to test the effects of light spectra [full-spectrum, violet (405 nm), blue (470 nm), cyan (500 nm), green (525 nm), yellow (570 nm), and red (625 nm)] on growth performance, molting, antioxidant capacity, stress response and expression of molting, and apoptosis-related genes in Scylla paramamosain. Results showed that spectrum had a significant effect on S. paramamosain physiology. Compared to blue light, crabs exposed to violet light had a significantly lower survival rate (79.5 ± 3.6% vs. 94.9 ± 3.6%), weight gain (49.2 ± 5.4 vs. 67.6 ± 6.7), molt frequency (4.2 ± 0.2 vs. 4.5 ± 0.1), and extended intermolt intervals between instar 1 and 2 stages (C1–C2) (6.3 ± 0.3 vs. 5.0 ± 0.1 days). Expression of the molt-inhibiting hormone (mih) gene was upregulated in crabs reared under violet light. According to the regression analysis, maximum SGR would be at 449.97 nm. Crabs exposed to blue light also had lower melatonin levels than under full-spectrum and lower cortisol levels than violet and yellow groups. Regarding oxidative stress, crabs in full-spectrum had lower H2O2 and MDA contents, however, no significant difference was found in total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) in hepatopancreas from crabs under different spectra. Gene expression of hsp40, hsp70, hsp90 were down-regulated in crabs exposed to the full-spectrum light group. Regarding apoptosis-related genes, bcl-2 gene expression in crabs under cyan and the cox IV and caspase 3 in green were upregulated, suggesting cyan light may inhibit, while green light may promote apoptosis. Taken together, these results suggest that blue or cyan light would promote growth performance, while full-spectrum light could reduce stress response in S. paramamosain
    • …
    corecore