12,846 research outputs found

    Systolic VLSI for Kalman filters

    Get PDF
    A novel two-dimensional parallel computing method for real-time Kalman filtering is presented. The mathematical formulation of a Kalman filter algorithm is rearranged to be the type of Faddeev algorithm for generalizing signal processing. The data flow mapping from the Faddeev algorithm to a two-dimensional concurrent computing structure is developed. The architecture of the resulting processor cells is regular, simple, expandable, and therefore naturally suitable for VLSI chip implementation. The computing methodology and the two-dimensional systolic arrays are useful for Kalman filter applications as well as other matrix/vector based algebraic computations

    A scheme for cancelling intercarrier interference using conjugate transmission in multicarrier communication systems

    Get PDF
    To mitigate intercarrier interference (ICI), a two-path algorithm is developed for multicarrier communication systems, including orthogonal frequency division multiplexing (OFDM) systems. The first path employs the regular OFDM algorithm. The second path uses the conjugate transmission of the first path. The combination of both paths forms a conjugate ICI cancellation scheme at the receiver. This conjugate cancellation (CC) scheme provides (1) a high signal to interference power ratio (SIR) in the presence of small frequency offsets (50 dB and 33 dB higher than that of the regular OFDM and linear self-cancellation algorithms [1], [2], respectively, at ΔfT = 0.1% of subcarrier frequency spacing); (2) better bit error rate (BER) performance in both additive white Gaussian noise (AWGN) and fading channels; (3) backward compatibility with the existing OFDM system; (4) no channel equalization is needed for reducing ICI, a simple low cost receiver without increasing system complexity. Although the two-path transmission reduces bandwidth efficiency, the disadvantage can be balanced by increasing signal alphabet sizes

    Strange metal in paramagnetic heavy-fermion Kondo lattice: Dynamical large-N fermionic multi-channel approach

    Full text link
    The mechanism of strange metal (SM) with unconventional charge transport near magnetic phase transitions has become an outstanding open problem in correlated electron systems. Recently, an exotic quantum critical SM phase was observed in paramagnetic frustrated heavy-fermion materials near Kondo breakdown. We establish a controlled theoretical framework to this issue via a dynamical large-N fermionic multichannel approach to the two-dimensional Kondo-Heisenberg lattice model, where KB transition separates a heavy-Fermi liquid from fermionic spin-liquid state. With Kondo fluctuations being fully considered, we find a distinct SM behavior with quasi-linear-in-temperature scattering rate associated with KB. When particle-hole symmetry is present, signatures of a critical spin-liquid SM phase as T→0T \rightarrow 0 are revealed with ω/T\omega/T scaling extended to a wide range. We attribute these features to the interplay of critical bosonic charge (Kondo) fluctuations and gapless fermionic spinons. The implications of our results for the experiments are discussed.Comment: 6 pages, 4 figure
    • …
    corecore