438 research outputs found

    Synthesis and Characteristics of Carbon Nanofibers/Silicon Composites and Application to Anode Materials of Li Secondary Batteries

    Get PDF
    Among the various synthesizing technologies of carbon nanofibers (CNFs), chemical vapor deposition (CVD) technology, which uses hydrocarbon gas or carbon monoxide as a carbon source gas and pyrolyzes it to grow CNFs on transition metal catalysts, such as Ni, Fe, and Co, has been regarded as the most inexpensive and convenient method to produce CNFs for industrial use. Experimental variables for CVD are source gas, catalyst layers, temperature, and reaction time. Since the particle size of metal catalysts has an influence on the diameter of CNFs, it is possible to control the diameter of CNFs by varying particle sizes of the metal. As such, it is possible to synthesize CNFs selectively through the selective deposition of catalyst metals. In this study, CNFs were grown by CVD on C-fiber textiles, which had catalysts deposited via electrophoretic deposition. The CNFs were coated with a silica layer via hydrolysis of TEOS (tetraethyl orthosilicate), and the CNFs were oxidized by nitric acid. Due to oxidation, a hydroxyl group was created on the CNFs, which was then able to be used as an activation site for the SiO2. CNFs and the CNFs/SiO2 composite can be used in various applications, such as a composite material, electromagnetic wave shielding material, ultrathin display devices, carbon semiconductors, and anode materials of Li secondary batteries. In particular, there is an increasing demand for lightweight, small-scale, and high-capacity batteries for portable electronic devices, such as laptop computers or smart phones, along with the escalating concern of fossil energy depletion. Accordingly, CNFs and CNFs/SiO2 composites are receiving attention for their use as anode materials of Li secondary batteries, which are eco-friendly, lightweight, and high capacity. Therefore, the physicochemical properties and electrochemical performance data of synthesized CNFs and CNFs/SiO2 composite are described in this chapter

    Preparation and Characterization of Carbon Nanofibers and its Composites by Chemical Vapor Deposition

    Get PDF
    Hydrocarbon gas or carbon monoxide was pyrolyzed by chemical vapor deposition (CVD), and carbon nanofiber (CNF) synthesis was performed using transition metals such as Ni, Fe, and Co as catalysts. When synthesizing carbon nanofibers using the CVD method, experimental variables are temperature, catalysts, source gas, etc. Especially, the particle size of the catalyst is the most important factor in determining the diameter of carbon nanofibers. Hydrocarbon gases, such as CH4, C2H4, benzene, and toluene are used as the carbon source, and in addition to these reaction gases, nonreactive gases such as H2, Ar, and N2 gases are used for transportation. Synthesis occurs at a synthesis temperature of 600–900°C, and catalyst metals such as Ni, Co, and Fe are definitely required when synthesizing CNFs. Therefore, it is possible to synthesize CNFs in selective areas through selective deposition of such catalyst metals. In this study, CNFs were synthesized by CVD. Ethylene gas was employed as the carbon source for synthesis of CNFs with H2 as the promoting gas and N2 as the balancing gas. Synthesized CNFs can be used in various applications, such as composite materials, electromagnetic wave shielding materials, ultrathin display devices, carbon semiconductors, and anode materials of Li secondary batteries. In particular, there is an increasing demand for light-weight, small-scale, and high-capacity batteries for portable electronic devices, such as notebook computers or smartphones along with the recent issue of fossil energy depletion. Accordingly, CNFs and their silicon-series composites are receiving attention for use as anode materials for lithium secondary batteries that are eco-friendly, light weight, and high capacity

    Fabrication and Characterization of Metal-Loaded Mixed Metal Oxides Gas Sensors for the Detection of Hazardous Gases

    Get PDF
    This study concerns gas sensors that may protect individuals by detecting hazardous gases that may be generated in hot spaces (≥50°C) with residues of organic waste. We investigated the responses and selectivities of the sensors to different kinds of hazardous gases such as acetaldehyde, toluene and hydrogen sulfide. We also investigated operating temperatures and catalysts for the sensors. The thick film semiconductor sensors that detected some hazardous gases were prepared using nano-sized sensing material powders (SnO2, WO3, ZnO) that were prepared through sol-gel and precipitation methods. The nano-sized sensing materials were blended with various amounts of metal oxides (SnO2, ZnO, WO3) and coated with transition metals (Pt, Pd, Ru, Au, Ag, Cu and In). The metal oxide thick films were fabricated on an Al2O3 plate with a Ni-Cr heater and a Pt electrode through a screen-printing method. Morphologies, compositions, phases, surface areas and particle sizes of sensor compounds were examined by SEM, EDS, XRD and BET analysis. The investigated response to the various hazardous vapors was expressed as the value of Ra/Rg, where Ra and Rg are the resistance of the sensor material in the air and in hazardous gas, respectively

    Analysis of Initial Baseline Clinical Parameters and Treatment Strategy Associated with Medication Failure in the Treatment of Benign Prostatic Hyperplasia in Korea

    Get PDF
    Purpose To analyze the baseline clinical factors and medication treatment strategy used in cases with medication treatment failure of benign prostatic hyperplasia (BPH). Methods From January 2006 to December 2009, 677 BPH patients with at least 3 months of treatment with medication were enrolled. We analyzed clinical factors by medication failure (n=161) versus maintenance (n=516), by prostate size (less than 30 g, n=231; 30 to 50 g, n=244; greater than 50 g, n=202), and by prostate-specific antigen (PSA) levels (less than 1.4 ng/mL, n=324; more than 1.4 ng/mL, n=353). Results Age, combination medication rate, PSA, and prostate volume were statistically different between the medication treatment failure and maintenance groups. By prostate size, the PSA and medication failure rates were relatively higher and the medication period was shorter in patients with a prostate size of more than 30 g. The combination medication rate was higher in patients with a prostate size of more than 50 g. The medication failure rate and prostate volume were higher in patients with a PSA level of more than 1.4 ng/mL. However, the combination treatment rate was not significantly different in patients with a PSA level lower than 1.4 ng/mL. Suggestive cutoffs for combination medication are a prostate volume of 34 g and PSA level of 1.9 ng/mL. Conclusions The clinical factors associated with medication failure were age, treatment type, and prostate volume. Combination therapy should be considered more in Korea in patients with a PSA level higher than 1.4 ng/mL and a prostate volume of between 30 and 50 g to prevent medication failure

    Compressive Behavior and Mechanical Characteristics and Their Application to Stress-Strain Relationship of Steel Fiber-Reinforced Reactive Powder Concrete

    Get PDF
    Although mechanical properties of concrete under uniaxial compression are important to design concrete structure, current design codes or other empirical equations have clear limitation on the prediction of mechanical properties. Various types of fiber-reinforced reactive powder concrete matrix were tested for making more usable and accurate estimation equations for mechanical properties for ultra high strength concrete. Investigated matrix has compressive strength ranged from 30 MPa to 200 MPa. Ultra high strength concrete was made by means of reactive powder concrete. Preventing brittle failure of this type of matrix, steel fibers were used. The volume fraction of steel fiber ranged from 0 to 2%. From the test results, steel fibers significantly increase the ductility, strength and stiffness of ultra high strength matrix. They are quantified with previously conducted researches about material properties of concrete under uniaxial loading. Applicability of estimation equations for mechanical properties of concrete was evaluated with test results of this study. From the evaluation, regression analysis was carried out, and new estimation equations were proposed. And these proposed equations were applied into stress-strain relation which was developed by previous research. Ascending part, which was affected by proposed equations of this study directly, well fitted into experimental results

    A Case of Reactive Plasmacytosis Mimicking Multiple Myeloma in A Patient with Primary Sjögren's Syndrome

    Get PDF
    Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease with well-documented association of lymphoid malignancies during the progress of the disease. Although several types of malignancy and pseudomalignancy have been reported in pSS, low-grade non-Hodgkin's lymphomas are the most frequently observed. Reactive plasmacytosis mimicking myeloma is a very rare condition in association with pSS. We describe a 72-yr-old woman with pSS who presented with hypergammaglobulinemia, and extensive bone marrow and lymph node plasmacytosis, which mimicked multiple myeloma. In this patient, there was an abnormal differentiation of memory B cells to plasma cells in the peripheral blood suggesting underlying pathogenetic mechanism for this condition

    Inappropriate antidiuretic hormone syndrome presenting as ectopic antidiuretic hormone-secreting gastric adenocarcinoma: a case report

    Get PDF
    INTRODUCTION: Although the syndrome of inappropriate antidiuretic hormone has connection with various malignant tumors, there are few reports associated with advanced gastric cancer. CASE PRESENTATION: We describe the case of a 63-year-old Korean male with inappropriate antidiuretic hormone syndrome due to an ectopic antidiuretic hormone-producing advanced gastric adenocarcinoma manifested with overt serum hypo-osmolar hyponatremia and high urinary sodium concentrations. His adrenal, thyroidal, and renal functioning were normal, and the hyponatremia improved following removal of the tumor. The cancer cells were immunostained and found to be positive for the antidiuretic hormone. To our knowledge, this is the first report of an antidiuretic hormone-secreting advanced gastric adenocarcinoma associated with the syndrome of inappropriate antidiuretic hormone, showing cancer cells immunostained for the antidiuretic hormone. CONCLUSIONS: Although a strong relationship between gastric cancer and the syndrome of inappropriate antidiuretic hormone remains to be established, we suggest that gastric cancer could be included as a differential diagnosis of cancer that is associated with the syndrome of antidiuretic hormone

    The effect of fermented buckwheat on producing L-carnitine enriched oyster mushroom

    Get PDF
    L-carnitine is biological compound which serves intake of long chain fatty acids into mitochondria. In market, L-carnitine is considered as nutritious supplements for weight-loss. L-carnitine is synthesized in human organ, but most of L-carnitine which human intakes are originated from meat based foods. Oyster mushroom (Pleurotus ostreatus), the second popular edible mushroom in the world, is the main source of L-carnitine after meat and pork. Recently, there were many efforts to study designer foods of which functional ingredients were increased. However most of studies were focused on dairy products. In this study, the fermented buckwheat by Rhizopus oligosporus that contained high L-carnitine contents were used to cultivate oyster mushroom. L-carnitine contents in oyster mushroom were quantified by LC-ESI-MS. Mushroom grown on buckwheat medium had 3.17 to 23.88% higher L-carnitine concentration than normal medium. The mushroom size was increased when 20% (w/w) of buckwheat was added to basal medium. The lightness of mushroom pileus (L*) significantly increased among all the treatments. These results demonstrate that buckwheat and fermented buckwheat is novel substrates to produce L-carnitine enriched functional mushroom.OAIID:RECH_ACHV_DSTSH_NO:A201702463RECH_ACHV_FG:RR00200003ADJUST_YN:EMP_ID:A079459CITE_RATE:FILENAME:태경.pdfDEPT_NM:국제농업기술학과EMAIL:[email protected]_YN:FILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/34dfad8a-5bc9-41cd-8160-c7846937fa22/linkCONFIRM:

    ArmA and RmtB Were the Predominant 16S RMTase Genes Responsible for Aminoglycoside-resistant Isolates in Korea

    Get PDF
    Pathogenic gram-negatives that produce 16S ribosomal RNA methyltransferases (16S RMTases) have already been distributed all over the world. To investigate the predominance of aminoglycoside resistance associated with 16S RMTases in Korea, we collected a total of 222 amikacin resistant Gram-negative clinical isolates from patient specimens between 1999 and 2015 from three hospital banks across Korea. ArmA and nntB were the predominant 16S RMTase genes responsible for aminoglycoside-resistant isolates circulating in Korean community settings although only one rmtA-producing isolate was detected in 2006.1
    corecore