2,133 research outputs found

    Effects of Rapid Maxillary Expansion on Upper Airway; A 3 Dimensional Cephalometric Analysis

    Get PDF
    The purpose of this study was to use cone-beam computed tomography (CBCT) to assess changes in the volume and cross sectional areas of the upper airway in children with maxillary constriction treated by rapid maxillary expansion (RME). The study group consisted of 5 males and 9 females with mean age of 12.93 years with posterior cross bite and constricted maxilla who were treated with hyrax expander as part of their comprehensive orthodontic treatment. Pre and post RME CBCT scans were analyzed with 3D Dolphin 11.0 software to measure the retropalatal (RP) and retroglossal (RG) airway changes including volume and cross sectional areas. The transverse width changes were evaluated from the maxillary inter 1st molar and inter 1st pre molar mid lingual alveolar plate points. Pre and post RME scans were compared with paired t test and Pearson correlation test was done on data reaching significance. Only the cross sectional airway measured at posterior nasal spine (PNS) to Basion (Ba) level showed a statistically significant increase (P=0.0004). The minimal cross sectional area (MCA) was always found within the RP airway. The inter-molar and inter-premolar mid lingual alveolar plate distances increased equally by 4.76 mm and were statistically significant (P\u3c 0.0001). The percentage increase at the 1st premolar level was significantly larger than at the 1st molar level (P= 0.035). PNS-Ba cross sectional area increase was highly correlated with the maxillary 1st molar mid lingual inter alveolar plate width (p=0.0013). In conclusion, RME produced a numerically equal amount of expansion between the mid inter-lingual plates of maxillary 1st molars and 1st premolars. However, when the percentage change was calculated, a greater opening was observed at the 1st premolar level suggesting a triangular shape of opening. In regard to the upper airway, a moderate increase of the cross sectional area adjacent to the hard palate was found and this increase was deemed to be highly dependent on the expansion between the maxillary 1st molars. Further studies with a larger sample size and incorporating breathing evaluations are needed to estimate the real impact of the RME on the airway

    Dimensional Changes of Upper Airway after Rapid Maxillary Expansion: A Prospective Cone-beam Computed Tomography Study

    Get PDF
    Introduction: The aim of this prospective study was to use cone-beam computed tomography to assess the dimensional changes of the upper airway in orthodontic patients with maxillary constriction treated by rapid maxillary expansion. Methods: Fourteen orthodontic patients (mean age, 12.9 years; range, 9.7-16 years) were recruited. The patients with posterior crossbite and constricted maxilla were treated with rapid maxillary expansion as the initial part of their comprehensive orthodontic treatments. Before and after rapid maxillary expansion conebeam computed tomography scans were taken to measure the retropalatal and retroglossal airway changes in terms of volume, and sagittal and cross-sectional areas. The transverse expansions by rapid maxillary expansion were assessed between the midlingual alveolar bone plates at the maxillary first molar and first premolar levels. The measurements of the before and after rapid maxillary expansion scans were compared by using paired t tests with the Bonferroni adjustment for multiple comparisons. Results: After rapid maxillary expansion, significant and equal amounts of 4.8 mm of expansion were observed at the first molar (P 5 0.0000) and the first premolar (P 5 0.0000) levels. The width increase at the first premolar level (20.0%) was significantly greater than that at the first molar level (15.0%) (P 5 0.035). As the primary outcome variable, the cross-sectional airway measured from the posterior nasal spine to basion level was the only parameter showing a significant increase of 99.4 mm2 (59.6%) after rapid maxillary expansion (P 5 0.0004). Conclusions: These results confirm the findings of previous studies of the effect of rapid maxillary expansion on the maxilla. Additionally, we found that only the cross-sectional area of the upper airway at the posterior nasal spine to basion level significantly gains a moderate increase after rapid maxillary expansion

    Ultraviolet photodepletion spectroscopy of dibenzo-18-crown-6-ether complexes with alkali metal cations

    Get PDF
    Ultraviolet photodepletion spectra of dibenzo-18-crown-6-ether complexes with alkali metal cations (M+-DB18C6, M = Cs, Rb, K, Na, and Li) were obtained in the gas phase using electrospray ionization quadrupole ion-trap reflectron time-of-flight mass spectrometry. The spectra exhibited a few distinct absorption bands in the wavenumber region of 35450−37800 cm^(−1). The lowest-energy band was tentatively assigned to be the origin of the S_0-S_1 transition, and the second band to a vibronic transition arising from the “benzene breathing” mode in conjunction with symmetric or asymmetric stretching vibration of the bonds between the metal cation and the oxygen atoms in DB18C6. The red shifts of the origin bands were observed in the spectra as the size of the metal cation in M^+-DB18C6 increased from Li^+ to Cs^+. We suggested that these red shifts arose mainly from the decrease in the binding energies of larger-sized metal cations to DB18C6 at the electronic ground state. These size effects of the metal cations on the geometric and electronic structures, and the binding properties of the complexes at the S_0 and S_1 states were further elucidated by theoretical calculations using density functional and time-dependent density functional theories

    A STUDY ON UTILIZATION OF CHINA’S BONDED AREA FOR EXPANDING AGRIFOOD EXPORT OF KOREA

    Get PDF
    China is showing trends of increase in international trade due to worldwide economic growth. Furthermore, the annual increases in trade value of its bonded area, Bonded logistics complex, etc. are greatly contributing to the development of China’s commerce as result of rising demands from foreign markets. Bonded area is favorable to trade environment and it is typically installed in a port relatively advanced in technology and economy. It differs from other areas due to government’s implementation of favoritism and special policies in that area. Such efficacy is economic like other foreign nations’ “Free Trade Zone”, “Export Processing Zone”, and others that all possess the four functionalities of international trade, modern logistics, entry processing, and commodity marketing.The biggest advantage of bonded area is drastically simplified export-import customs clearance and favorable customs process, and includes other advantages including inspection of goods, tax investigations, foreign exchanges, financial management, etc. that are administered at once. These factors provide accelerated administration of customs procedure and effective business affairs, form ideal investment environment for internationalization of companies, and reduce distribution costs.The Chinese government, following the successful management of bonded area and BLP, is now focusing on establishing the final directing point of the Free Trade Zone. On September 29th, 2013 the “Shanghai Free Trade demonstration borough” was officially launched to form the progressive economic system more efficient than the traditional system. Likewise, we should take advantage of such BLP to export agricultural processed goods, equipment and materials to solidify Korea’s agricultural position there. The trade that utilizes BLP is still mostly conducted by focusing large corporations’ products, and in practice, there have been little discussions of agriculture on the surface aside from the manufacturing industry. However, this venue should serve as appropriate consideration for the sixth industry of agricultural companies, small and medium-sized businesses to take part and form an export path to China’s market

    PERFORMANCE EVALUATION OF HYBRID SOLAR AIRWATER HEATER WITH VARIOUS INLET AIR TEMPERATURE DURING HEATING PROCESS

    Get PDF
    Research about hybrid solar air-water heater that can heating both air and liquid has been conducted for enhancing the usage of solar thermal energy. In the previous study, thermal efficiency of this collector was investigated with many operating and external conditions, but all of previous experiment conducted using outdoor air as inlet air of collector. Thus, in this study, the performance change of hybrid solar air-water heater was investigated with change of inlet air temperature during air and liquid were heated simultaneously. As a result, thermal efficiency for liquid heating was increased with increment of the inlet air temperature. On the contrary to this, thermal efficiency for air heating of collector was decreased with increment of inlet air temperature. In case of total thermal efficiency of collector considered air and liquid heat gain, it was also decreased with increment of inlet air temperature. From these results, it was confirmed that using outdoor air directly as inlet air of collector is better for the use of solar energy. However it is hard to conclude that which is better between using outdoor air and heated air on the perspective of energy saving of building because heat storage performance was increased if the return air or any heated air is used as inlet air of hybrid solar air-water heater when air and liquid was heated simultaneously even air and total thermal efficiency is decreased. Thus, the necessity of more profound study and consideration about this as a further study was also confirmed

    Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

    Get PDF
    Background: Titanium dioxide (TiO2) has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined.Methods and results: In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25-70) together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25-70 and ultraviolet A irradiation.Conclusion: These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein, Bax. Elucidating the molecular mechanisms by which nanosized particles induce activation of cell death signaling pathways would be critical for the development of prevention strategies to minimize the cytotoxicity of nanomaterials.This work was supported by the Korea Ministry of Environment and The Eco-Technopia 21 Project (091-091-081)

    Synthesize and Segment: Towards Improved Catheter Segmentation via Adversarial Augmentation

    Get PDF
    Automatic catheter and guidewire segmentation plays an important role in robot-assisted interventions that are guided by fluoroscopy. Existing learning based methods addressing the task of segmentation or tracking are often limited by the scarcity of annotated samples and difficulty in data collection. In the case of deep learning based methods, the demand for large amounts of labeled data further impedes successful application. We propose a synthesize and segment approach with plug in possibilities for segmentation to address this. We show that an adversarially learned image-to-image translation network can synthesize catheters in X-ray fluoroscopy enabling data augmentation in order to alleviate a low data regime. To make realistic synthesized images, we train the translation network via a perceptual loss coupled with similarity constraints. Then existing segmentation networks are used to learn accurate localization of catheters in a semi-supervised setting with the generated images. The empirical results on collected medical datasets show the value of our approach with significant improvements over existing translation baseline methods. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.1

    Effects of Substrate to Inoculum Ratio on the Biochemical Methane Potential of Piggery Slaughterhouse Wastes

    Get PDF
    The aim of this study was to assess the effect of substrate to inoculum ratio (S/I ratio) on the biochemical methane potential (BMP) and anaerobic biodegradability (Ddeg) of different piggery slaughterhouse wastes, such as piggery blood, intestine residue, and digestive tract content. These wastes were sampled from a piggery slaughterhouse located in Kimje, South Korea. Cumulative methane production curves for the wastes were obtained from the anaerobic batch fermentation having different S/I ratios of 0.1, 0.5, 1.0, and 1.5. BMP and anaerobic biodegradabilities (Ddeg) of the wastes were calculated from cumulative methane production data for the tested conditions. At the lowest S/I ration of 0.1, BMPs of piggery blood, intestine residue, and digestive tract content were determined to be 0.799, 0.848, and 1.076 Nm3 kg−1-VSadded, respectively, which were above the theoretical methane potentials of 0.539, 0.644, and 0.517 Nm3 kg−1-VSadded for blood, intestine residue, and digestive tract content, respectively. However, BMPs obtained from the higher S/I ratios of 0.5, 1.0, and 1.5 were within the theoretical range for all three types of waste and were not significantly different for the different S/I ratios tested. Anaerobic biodegradabilities calculated from BMP data showed a similar tendency. These results imply that, for BMP assay in an anaerobic reactor, the S/I ratio of anaerobic reactor should be above 0.1 and the inoculum should be sufficiently stabilized to avoid further degradation during the assay

    Could Fractional Exhaled Nitric Oxide Test be Useful in Predicting Inhaled Corticosteroid Responsiveness in Chronic Cough? A Systematic Review

    Get PDF
    © 2016 Background Fractional exhaled nitric oxide (FENO) is a safe and convenient test for assessing T H 2 airway inflammation, which is potentially useful in the management of patients with chronic cough. Objective To summarize the current evidence on the diagnostic usefulness of FENO for predicting inhaled corticosteroid (ICS) responsiveness in patients with chronic cough. Methods A systematic literature review was conducted to identify articles published in peer-reviewed journals up to February 2015, without language restriction. We included studies that reported the usefulness of FENO (index test) for predicting ICS responsiveness (reference standard) in patients with chronic cough (target condition). The data were extracted to construct a 2 × 2 accuracy table. Study quality was assessed with Quality Assessment of Diagnostic Accuracy Studies 2. Results We identified 5 original studies (2 prospective and 3 retrospective studies). We identified considerable heterogeneities in study design and outcome definitions, and thus were unable to perform a meta-analysis. The proportion of ICS responders ranged from 44% to 59%. Sensitivity and specificity ranged from 53% to 90%, and from 63% to 97%, respectively. The reported area under the curve ranged from abou t 0.60 to 0.87; however, studies with a prospective design and a lower prevalence of asthma had lower area under the curve values. None measured placebo effects or objective cough frequency. Conclusions We did not find strong evidence to support the use of FENO tests for predicting ICS responsiveness in chronic cough. Further studies need to have a randomized, placebo-controlled design, and should use validated measurement tools for cough. Standardization would facilitate the development of clinical evidence
    • 

    corecore