24 research outputs found

    as a Causative Agent for Soft Rot of Radish in Korea

    Get PDF
    In October 2021, soft rot disease seriously affected radish crop in Dangjin, Chungcheongnam-do, Korea. The infected radishes were stunted and turned dark green, with yellowish leaf foliage. A slimy, wet, and decayed pith region was observed in the infected roots. The bacterial strain KNUB-03-21 was isolated from infected roots. The biochemical and morphological characteristics of the isolate were similar to those of Pectobacterium brasiliense. Phylogenetic analysis based on the sequences of the 16S rRNA region and the concatenated DNA polymerase III subunit tau (dnaX), leucine-tRNA ligase (leuS), and recombinase subunit A (recA) genes confirmed that the isolate is a novel strain of P. brasiliense. Artificial inoculation of radish with P. brasiliense KNUB-03-21 resulted in soft rot symptoms similar to those observed in infected radish in the field; subsequently, P. brasiliense KNUB-03-21 was reisolated and reidentified. To our knowledge, this is the first report of P. brasiliense as a causal pathogen of radish soft rot in Korea

    PCR Detection Method for Rapid Diagnosis of Bacterial Canker Caused by Clavibacter michiganensis on Tomato

    No full text
    Bacterial canker caused by Clavibacter michiganensis is considered to be one of the most serious diseases, leading to economic damage to tomato worldwide. Diagnosis of the bacterial canker on tomato is known to be difficult because the causal pathogen is slow-growing on artificial media as well as causes latent infection in tomato. In this study, as a less time-consuming method, a specific primer set was newly designed for rapid detection of C. michiganensis. The method presented here is so simple, easy, and fast that it can be useful and practical in direct detection of the bacterial canker pathogen from tomato plants

    First Report of Pseudomonas viridiflava Causing Leaf Spot of Cucumber in Korea

    No full text
    A severe disease with leaf spots and necrotic symptoms was observed in cucumber (Cucumis sativus L.) seedlings in April 2018 at a nursery in Kimjae, Korea (35°47'09.8"N 127°2'24.3"E). The infected plants initially showed spots on water-soaked cotyledons which, at later stages, enlarged and spread to the leaves, which the lesions becoming dry and chlorotic. The symptomatic samples were collected from cucumber and the isolates were cultured on LB agar. The representative bacterial strain selected for identification showed fluorescent on King’s medium B, was potato rot-positive, levan and arginine dihydrolase-negative, oxidase-negative and tobacco hypersensitivity-positive in LOPAT group 2 as determined by LOPAT tests. A pathogenicity test was carried out on a 3-week-old cucumber. After 3 days of inoculation, leaf spots and necrotic symptoms appeared on the cucumber, similar to the originally infected plants. The infecting bacterial strain was identified as Pseudomonas viridiflava, by 16S rDNA sequence analysis. This is the first report of leaf spot diseases on cucumber caused by P. viridiflava

    First Report of Die-Back on Rose (Rosa hybrida) Caused by Lasiodiplodia pseudotheobromae in Korea

    No full text
    In 2015, symptoms of die-back on Rosa hybrida were observed in Taean, Korea. The aims of this study were to determine the cause of die-back on Rosa hybrida and characterize the pathogen. The fungal isolates were obtained and used for pathogenicity test, morphological and molecular analyses. The pathogenicity test on healthy branches of Rosa hybrida produced die-back, as the original symptoms. For the morphological study, the isolates were inoculated onto potato dextrose agar and incubated for 7 days at 25°C. The colonies grew up quickly and turned white to gray in color. Conidia were observed under an optical microscope. The features of conidia were ellipsoidal, grayish brown in color, 20-31×11-17 µm in size and had one septum. Molecular analyses of the ITS region, TEF and TUB genes were conducted to confirm the identity of the pathogen. The phylogenetic tree of the multi-gene sequences indicated that the causal agent was Lasiodiplodia pseudotheobromae. This study is the first report of die-back caused by Lasiodiplodia pseudotheobromae on Rose (Rosa hybrida)

    First Report of Verticillium Wilt Caused by Verticillium dahliae Infection on Chinese Cabbage in Korea

    Get PDF
    Chinese cabbage (Brassica rapa L.) is an important vegetable in Korea as the main ingredient for kimchi. In June 2014, symptoms of leaf wilt, drying, and drop off were observed in a Chinese cabbage farm located at Taebeak (37°26′50.7″N, 128°95′50.0″E), Gangwon province, Korea. This disease was observed on ∼35% of plants in the field, causing an almost 10% decrease in production

    Using RNA-Sequencing Data to Examine Tissue-Specific Garlic Microbiomes

    No full text
    Garlic (Allium sativum) is a perennial bulbous plant. Due to its clonal propagation, various diseases threaten the yield and quality of garlic. In this study, we conducted in silico analysis to identify microorganisms, bacteria, fungi, and viruses in six different tissues using garlic RNA-sequencing data. The number of identified microbial species was the highest in inflorescences, followed by flowers and bulb cloves. With the Kraken2 tool, 57% of identified microbial reads were assigned to bacteria and 41% were assigned to viruses. Fungi only made up 1% of microbial reads. At the species level, Streptomyces lividans was the most dominant bacteria while Fusarium pseudograminearum was the most abundant fungi. Several allexiviruses were identified. Of them, the most abundant virus was garlic virus C followed by shallot virus X. We obtained a total of 14 viral genome sequences for four allexiviruses. As we expected, the microbial community varied depending on the tissue types, although there was a dominant microorganism in each tissue. In addition, we found that Kraken2 was a very powerful and efficient tool for the bacteria using RNA-sequencing data with some limitations for virome study

    Identification of Fusarium Basal Rot Pathogens of Onion and Evaluation of Fungicides against the Pathogens

    No full text
    AbstractOnion (Allium cepa L.) is an economically important vegetable crop worldwide. However, various fungal diseases, including Fusarium basal rot (FBR), neck rot, and white rot, reduce onion production or bulb storage life. FBR caused by Fusarium species is among the most destructive onion diseases. In this study, we identified Fusarium species associated with FBR in Jeolla and Gyeongsang Provinces in South Korea and evaluated fungicides against the pathogens. Our morphological and molecular analyses showed that FBR in onions is associated with Fusarium commune, Fusarium oxysporum, and Fusarium proliferatum. We selected seven fungicides (fludioxonil, hexaconazole, mandestrobin, penthiopyrad, prochloraz-manganese, pydiflumetofen, and tebuconazole) and evaluated their inhibitory effects on mycelial growth of the pathogens at three different concentrations (0.01, 0.1, and 1 mg/mL). We found that prochloraz-manganese was highly effective, inhibiting 100% of the mycelial growth of the pathogens at all concentrations, followed by tebuconazole. Fludioxonil showed < 50% inhibition at 1 mg/mL for the tested isolates

    First Report of as the Causal Pathogen of Soft Rot in Kimchi Cabbage in Korea

    No full text
    In September 2021, gray-to-brown discoloration and expanding water-soaked lesions were observed on the outer and inner layers and the core of kimchi cabbage (Brassica rapa subsp. pekinensis) in fields located in Samcheok, Gangwondo, Korea. A bacterial strain designated as KNUB-02-21 was isolated from infected cabbage samples. Phylogenetic analysis based on the sequences of the 16S rRNA region and the dnaX, leuS, and recA genes confirmed that the strain was affiliated with Pectobacterium versatile. Additionally, the biochemical and morphological profiles of the isolate were similar to those of P. versatile. Based on these results, the isolate was identified as a novel strain of P. versatile. Healthy kimchi cabbage slices developed soft rot upon inoculation with P. versatile KNUB-02-21 and exhibited symptoms similar to those observed in the diseased plants in fields. The re-isolated strains were similar to those of P. versatile. Prior to our study, P. versatile as the causative pathogen of kimchi cabbage soft rot had not been reported in Korea
    corecore