1,334 research outputs found

    Infusion extractor

    Get PDF
    This invention relates to an apparatus and method of removing desirable constituents from an infusible material by infusion extraction. A piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber. The method is applicable to operation in low or micro-gravity environments

    Method of infusion extraction

    Get PDF
    Apparatus and method of removing desirable constituents from an infusible material by infusion extraction, where a piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, and where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber

    Infusion Extractor

    Get PDF
    Apparatus and method of removing desirable constituents from an infusible material by infusion extraction, where a piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, and where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber

    Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror

    Get PDF
    High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research

    The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusions propulsion applications

    Get PDF
    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted

    A Flight Demonstration of Plasma Rocket Propulsion

    Get PDF
    The Advanced Space Propulsion Laboratory at the NASA Johnson Space Center has been engaged in the development of a variable specific impulse magnetoplasma rocket (V ASIMR) for several years. This type of rocket could be used in the future to propel interplanetary spacecraft and has the potential to open the entire solar system to human exploration. One feature of this propulsion technology is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. Variation of specific impulse and thrust enhances the ability to optimize interplanetary trajectories and results in shorter trip times and lower propellant requirements than with a fixed specific impulse. In its ultimate application for interplanetary travel, the VASIMR would be a multi-megawatt device. A much lower power system is being designed for demonstration in the 2004 timeframe. This first space demonstration would employ a lO-kilowatt thruster aboard a solar powered spacecraft in Earth orbit. The 1O-kilowatt V ASIMR demonstration unit would operate for a period of several months with hydrogen or deuterium propellant with a specific impulse of 10,000 seconds

    Rapid Mars transits with exhaust-modulated plasma propulsion

    Get PDF
    The operational characteristics of the Exhaust-Modulated Plasma Rocket are described. Four basic human and robotic mission scenarios to Mars are analyzed using numerical optimization techniques at variable specific impulse and constant power. The device is well suited for 'split-sprint' missions, allowing fast, one-way low-payload human transits of 90 to 104 days, as well as slower, 180-day, high-payload robotic precursor flights. Abort capabilities, essential for human missions, are also explored

    Validating A Plasma Momentum Flux Sensor Against an Inverted Pendulum Thrust Stand

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76115/1/AIAA-2008-4739-514.pd

    Hall Thruster and VASIMR VX-100 Force measurements using a Plasma Momentum Flux Sensor

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76509/1/AIAA-2009-246-125.pd
    • …
    corecore