6 research outputs found

    Towards real-time monte carlo for biomedicine

    No full text
    Monte Carlo methods provide the “gold standard” computational technique for solving biomedical problems but their use is hindered by the slow convergence of the sample means. An exponential increase in the convergence rate can be obtained by adaptively modifying the sampling and weighting strategy employed. However, if the radiance is represented globally by a truncated expansion of basis functions, or locally by a region-wise constant or low degree polynomial, a bias is introduced by the truncation and/or the number of subregions. The sheer number of expansion coefficients or geometric subdivisions created by the biased representation then partly or entirely offsets the geometric acceleration of the convergence rate. As well, the (unknown amount of) bias is unacceptable for a gold standard numerical method. We introduce a new unbiased estimator of the solution of radiative transfer equation (RTE) that constrains the radiance to obey the transport equation. We provide numerical evidence of the superiority of this Transport-Constrained Unbiased Radiance Estimator (T-CURE) in various transport problems and indicate its promise for general heterogeneous problems
    corecore