15,024 research outputs found

    Non-spectator Contributions To The Lifetime of Λb\Lambda_{b}

    Full text link
    In this work, we evaluate the contributions of non-spectator effects to the lifetimes of Λb\Lambda_b and B-mesons. Based on the well-established models and within a reasonable range of the concerned parameters, the contributions can reduce the lifetime of Λb\Lambda_b by 787 \sim 8% compared to that of B-mesons which are not significantly affected. This might partly explain the measured ratio τ(Λb)/τ(B0)=0.79\tau(\Lambda_{b})/\tau(B^{0})=0.79 \cite{Data}, which has been a long-standing discrepancy between theory and experimental data

    Large-Scale Spectroscopic Mapping of the ρ\rho Ophiuchi Molecular Cloud Complex I. The C2_{2}H to N2_2H+^+ Ratio as a Signpost of Cloud Characteristics

    Full text link
    We present 2.5-square-degree C2_{2}H N=1-0 and N2_2H+^+ J=1-0 maps of the ρ\rho Ophiuchi molecular cloud complex. These are the first large-scale maps of the ρ\rho Ophiuchi molecular cloud complex with these two tracers. The C2_{2}H emission is spatially more extended than the N2_2H+^+ emission. One faint N2_2H+^+ clump Oph-M and one C2_{2}H ring Oph-RingSW are identified for the first time. The observed C2_{2}H to N2_{2}H+^{+} abundance ratio ([C2_{2}H]/[N2_{2}H+^{+}]) varies between 5 and 110. We modeled the C2_{2}H and N2_2H+^+ abundances with 1-D chemical models which show a clear decline of [C2_2H]/[N2_2H+^+] with chemical age. Such an evolutionary trend is little affected by temperatures when they are below 40 K. At high density (nH_H >> 105^5 cm3^{-3}), however, the time it takes for the abundance ratio to drop at least one order of magnitude becomes less than the dynamical time (e.g., turbulence crossing time \rm \sim105^5 years). The observed [C2_2H]/[N2_2H+^+] difference between L1688 and L1689 can be explained by L1688 having chemically younger gas in relatively less dense regions. The observed [C2_{2}H]/[N2_{2}H+^{+}] values are the results of time evolution, accelerated at higher densities. For the relative low density regions in L1688 where only C2_2H emission was detected, the gas should be chemically younger.Comment: Accepted by ApJ, 45 pages, 10 figure

    Diffusion of Colloidal Rods in Corrugated Channels

    Get PDF
    In many natural and artificial devices diffusive transport takes place in confined geometries with corrugated boundaries. Such boundaries cause both entropic and hydrodynamic effects, which have been studied only for the case of spherical particles. Here we experimentally investigate diffusion of particles of elongated shape confined into a corrugated quasi-two-dimensional channel. Elongated shape causes complex excluded-volume interactions between particle and channel walls which reduce the accessible configuration space and lead to novel entropic free energy effects. The extra rotational degree of freedom also gives rise to a complex diffusivity matrix that depends on both the particle location and its orientation. We further show how to extend the standard Fick-Jacobs theory to incorporate combined hydrodynamic and entropic effects, so as, for instance, to accurately predict experimentally measured mean first passage times along the channel. Our approach can be used as a generic method to describe translational diffusion of anisotropic particles in corrugated channels.Comment: 12 pages and 4 figure

    Adsorption of Ions at the Interface of Clay Minerals and Aqueous Solutions

    Get PDF
    Adsorption of ions at the interface of clay minerals and aqueous solutions plays a critical role in a wide spectrum of colloidal, chemical, physical, and geological processes. Owing to the particular complexity of related systems and the femtosecond scale of related processes, the direct experimental observations often become a challenging task. As a contrast, computer simulations have proven to be a competent and powerful approach therein and already realized fruitful and significant contributions. In this chapter, we attempt to draw a relatively comprehensive picture of the interfacial adsorption of ions mainly within the context of computer simulations. As elaborated, quantum mechanics (QM) and molecular dynamics (MD), two popular simulation techniques currently used, have respective advantages, and with their collaborative efforts, we are striding toward the in-depth and systematic understanding of adsorption configuration, distribution, stability, reaction thermodynamics and mechanism, dynamics, diffusivity as well as electric double layer and other fundamental issues that are closely associated with the adsorption of ions at the interface of clay minerals and aqueous solutions. In addition, we demonstrate that investigation of the interfacial adsorption of ions greatly helps to unravel the origin and mechanism of ion-specific effects, whose importance has been explicitly suggested to be no less than Gregor Mendel’s work to genetics

    Application of Density Functional Theory in Soil Science

    Get PDF
    Soil is the basis for life and soil science is regarded as the final frontier; however, as compared to chemistry, physics, biology, and other disciplines, soil science undergoes an obviously slower development and remains almost stagnant in the past few decades, mainly due to two reasons: (1) wrong and outdated perceptions for a large portion of soil researchers; (2) complexity of soil systems that are difficult to characterize by current experimental techniques. Computer simulations have unique advantages to handle complex systems while currently, its role during soil researches is far from being recognized. In this chapter, several examples are given with respect to application of density functional theory (DFT) calculations to soil science, focusing on the adsorption of uranyl ion and SO2 onto mineral surfaces and reaction mechanisms to form acid rain. In this way, insightful clues at the atomic level are provided for the adsorption, interaction, and reactions regarding soil systems. We believe that computer simulations including DFT are the right key to unravel the complicated processes occurring in soils. More efforts of computer simulations are anticipated for soil science with aim to decipher the experimental results and probe the uncharted principles that may result in a revolutionary in the near future

    Instantaneous Bethe-Salpeter Equation and Its Exact Solution

    Full text link
    We present an approach to solve a Bethe-Salpeter (BS) equation exactly without any approximation if the kernel of the BS equation exactly is instantaneous, and take positronium as an example to illustrate the general features of the solutions. As a middle stage, a set of coupled and self-consistent integration equations for a few scalar functions can be equivalently derived from the BS equation always, which are solvable accurately. For positronium, precise corrections to those of the Schr\"odinger equation in order vv (relative velocity) in eigenfunctions, in order v2v^2 in eigenvalues, and the possible mixing, such as that between SS (PP) and DD (FF) components in JPC=1J^{PC}=1^{--} (JPC=2++J^{PC}=2^{++}) states as well, are determined quantitatively. Moreover, we also point out that there is a problematic step in the classical derivation which was proposed first by E.E. Salpeter. Finally, we emphasize that for the effective theories (such as NRQED and NRQCD etc) we should pay great attention on the corrections indicated by the exact solutions.Comment: 4 pages, replace for shortening the manuscrip

    Similarities and differences of functional connectivity in drug-naïve, first-episode adolescent and young adult with major depressive disorder and schizophrenia

    Get PDF
    Major depressive disorder (MDD) and schizophrenia (SZ) are considered two distinct psychiatric disorders. Yet, they have considerable overlap in symptomatology and clinical features, particularly in the initial phases of illness. The amygdala and prefrontal cortex (PFC) appear to have critical roles in these disorders; however, abnormalities appear to manifest differently. In our study forty-nine drug-naïve, first-episode MDD, 45 drug-naïve, first-episode SZ, and 50 healthy control (HC) participants from 13 to 30 years old underwent resting-state functional magnetic resonance imaging. Functional connectivity (FC) between the amygdala and PFC was compared among the three groups. Significant differences in FC were observed between the amygdala and ventral PFC (VPFC), dorsolateral PFC (DLPFC), and dorsal anterior cingulated cortex (dACC) among the three groups. Further analyses demonstrated that MDD showed decreased amygdala-VPFC FC and SZ had reductions in amygdala-dACC FC. Both the diagnostic groups had significantly decreased amygdala-DLPFC FC. These indicate abnormalities in amygdala-PFC FC and further support the importance of the interaction between the amygdala and PFC in adolescents and young adults with these disorders. Additionally, the alterations in amygdala-PFC FC may underlie the initial similarities observed between MDD and SZ and suggest potential markers of differentiation between the disorders at first onset

    Microstructure evolution and mechanical property response of TC11 titanium alloy under electroshock treatment

    Get PDF
    © 2020 The Authors This work investigated the effects of electroshock treatment (EST) on the microstructure variation and mechanical properties of TC11 alloy. The average hardness of the specimens decreased from 358 HV to 328 HV after EST of 0.04 s, then increased to 396 HV after EST of 0.06 s. After EST, the yield strength of specimen declined from 959 MPa to 797 MPa after EST of 0.04 s, and then increased to 1265 MPa after EST of 0.06 s, but the fracture strain decreased continuously. The variation in mechanical properties was closely related to the phase transition from the secondary α (αs) to β phase, and the precipitation of refined needlelike α martensite (αM). The diffusion of atoms accompanied by broaden αs/β boundary from 11.2 nm to 27.6 nm due to the phase transformation after EST by 0.04 s and the dislocation pileup at the boundary to form defects, which resulted the decrease in strength. While increasing the EST time to 0.06 s, the width of αM/β boundary decreased to 5.91 nm. All results indicated that the EST is an effective method for optimizing the microstructure and mechanical properties of titanium alloys in a short time
    corecore