48 research outputs found

    A Microfluidic Device with Integrated Sonication and Immunoprecipitation for Sensitive Epigenetic Assays

    No full text
    Epigenetic studies increasingly require analysis of a small number of cells that are of one specific type and derived from patients or animals. In this report, we demonstrate a simple microfluidic device that integrates sonication and immunoprecipitation (IP) for epigenetic assays, such as chromatin immunoprecipitation (ChIP) and methylated DNA immunoprecipitation (MeDIP). By incorporating an ultrasonic transducer with a microfluidic chamber, we implemented microscale sonication for both shearing chromatin/DNA and mixing/washing of IP beads. Such integration allowed highly sensitive tests starting with 100 cross-linked cells for ChIP or 500 pg of genomic DNA for MeDIP (compared to 10<sup>6</sup>–10<sup>7</sup> cells for ChIP and 1–10 μg of DNA for MeDIP in conventional assays). The entire on-chip process of sonication and IP took only 1 h. Our tool will be useful for highly sensitive epigenetic studies based on a small quantity of sample

    A Microfluidic Device with Integrated Sonication and Immunoprecipitation for Sensitive Epigenetic Assays

    No full text
    Epigenetic studies increasingly require analysis of a small number of cells that are of one specific type and derived from patients or animals. In this report, we demonstrate a simple microfluidic device that integrates sonication and immunoprecipitation (IP) for epigenetic assays, such as chromatin immunoprecipitation (ChIP) and methylated DNA immunoprecipitation (MeDIP). By incorporating an ultrasonic transducer with a microfluidic chamber, we implemented microscale sonication for both shearing chromatin/DNA and mixing/washing of IP beads. Such integration allowed highly sensitive tests starting with 100 cross-linked cells for ChIP or 500 pg of genomic DNA for MeDIP (compared to 10<sup>6</sup>–10<sup>7</sup> cells for ChIP and 1–10 μg of DNA for MeDIP in conventional assays). The entire on-chip process of sonication and IP took only 1 h. Our tool will be useful for highly sensitive epigenetic studies based on a small quantity of sample

    A Microfluidic Device with Integrated Sonication and Immunoprecipitation for Sensitive Epigenetic Assays

    No full text
    Epigenetic studies increasingly require analysis of a small number of cells that are of one specific type and derived from patients or animals. In this report, we demonstrate a simple microfluidic device that integrates sonication and immunoprecipitation (IP) for epigenetic assays, such as chromatin immunoprecipitation (ChIP) and methylated DNA immunoprecipitation (MeDIP). By incorporating an ultrasonic transducer with a microfluidic chamber, we implemented microscale sonication for both shearing chromatin/DNA and mixing/washing of IP beads. Such integration allowed highly sensitive tests starting with 100 cross-linked cells for ChIP or 500 pg of genomic DNA for MeDIP (compared to 10<sup>6</sup>–10<sup>7</sup> cells for ChIP and 1–10 μg of DNA for MeDIP in conventional assays). The entire on-chip process of sonication and IP took only 1 h. Our tool will be useful for highly sensitive epigenetic studies based on a small quantity of sample

    Microfluidics-Based Chromosome Conformation Capture (3C) Technology for Examining Chromatin Organization with a Low Quantity of Cells

    No full text
    Detecting three-dimensional (3D) genome organization in the form of physical interactions between various genomic loci is of great importance for understanding transcriptional regulations and cellular fate. Chromosome Conformation Capture (3C) method is the gold standard for examining chromatin organization, but usually requires a large number of cells (>10<sup>7</sup>). This hinders studies of scarce tissue samples from animals and patients using the method. Here we developed a microfluidics-based approach for examining chromosome conformation by 3C technology. Critical 3C steps, such as digestion and religation of BAC DNA and cross-linked chromatin, were implemented on a microfluidic chip using a low quantity of cells (<10<sup>4</sup>). Using this technology, we analyzed the chromatin looping interactions in the human β-globin. We envision that our method will provide a powerful tool for low-input analysis of chromosome conformation and epigenetic regulations

    A Microfluidic Device with Integrated Sonication and Immunoprecipitation for Sensitive Epigenetic Assays

    No full text
    Epigenetic studies increasingly require analysis of a small number of cells that are of one specific type and derived from patients or animals. In this report, we demonstrate a simple microfluidic device that integrates sonication and immunoprecipitation (IP) for epigenetic assays, such as chromatin immunoprecipitation (ChIP) and methylated DNA immunoprecipitation (MeDIP). By incorporating an ultrasonic transducer with a microfluidic chamber, we implemented microscale sonication for both shearing chromatin/DNA and mixing/washing of IP beads. Such integration allowed highly sensitive tests starting with 100 cross-linked cells for ChIP or 500 pg of genomic DNA for MeDIP (compared to 10<sup>6</sup>–10<sup>7</sup> cells for ChIP and 1–10 μg of DNA for MeDIP in conventional assays). The entire on-chip process of sonication and IP took only 1 h. Our tool will be useful for highly sensitive epigenetic studies based on a small quantity of sample

    Quantitative Analysis of Ligand Induced Heterodimerization of Two Distinct Receptors

    No full text
    The induced dimerization of two distinct receptors through a heterobifunctional inducer is prevalent among all levels of cellular signaling processes, yet its complexity poses difficulty for systematic quantitative analysis. This paper first shows how to calculate the amount of any possible complex or monomer of heteroligand and two receptors present at equilibrium. The theory is subsequently applied to the determination of three independent equilibrium parameters involved in the rapamycin induced FKBP and FRB dimerization, in which all parameters were simultaneously estimated using one set of fluorescence resonance energy transfer (FRET) experiments. A MATLAB script is provided for parametric fitting

    Additional file 1 of NoGOA: predicting noisy GO annotations using evidences and sparse representation

    No full text
    Supplementary file of ‘NoGOA: predicting noisy GO annotations using evidences and sparse representation’ This PDF file includes additional experimental results mentioned in the main text. (PDF 1300 kb

    Distinct Enzyme–Substrate Interactions Revealed by Two Dimensional Kinetic Comparison between Dehaloperoxidase-Hemoglobin and Horseradish Peroxidase

    No full text
    The time-resolved kinetics of substrate oxidation and cosubstrate H<sub>2</sub>O<sub>2</sub> reduction by dehaloperoxidase-hemoglobin (DHP) on a seconds-to-minutes time scale was analyzed for peroxidase substrates 2,4,6-tribromophenol (2,4,6-TBP), 2,4,6-trichlorophenol (2,4,6-TCP), and ABTS. Substrates 2,4,6-TBP and 2,4,6-TCP show substrate inhibition at high concentration due to the internal binding at the distal pocket of DHP, whereas ABTS does not show substrate inhibition at any concentration. The data are consistent with an external binding site for the substrates with an internal substrate inhibitor binding site for 2,4,6-TBP and 2,4,6-TCP. We have also compared the kinetic behavior of horseradish peroxidase (HRP) in terms of <i>k</i><sub>cat</sub>, <i>K</i><sub>m</sub><sup>AH<sub>2</sub></sup> and <i>K</i><sub>m</sub><sup>H<sub>2</sub>O<sub>2</sub></sup> using the same kinetic scheme. Unlike DHP, HRP does not exhibit any measurable substrate inhibition, consistent with substrate binding at the edge of heme near the protein surface at all substrate concentrations. The binding of substrates and their interactions with the heme iron were further compared between DHP and HRP using a competitive fluoride binding experiment, which provides a method for quantitative measurement of internal association constants associated with substrate inhibition. These experiments show the regulatory role of an internal substrate binding site in DHP from both a kinetic and competitive ligand binding perspective. The interaction of DHP with substrates as a result of internal binding actually stabilizes that protein and permits DHP to function under conditions that denature HRP. As a consequence, DHP is a tortoise, a slow but steady enzyme that wins the evolutionary race against the HRP-type of peroxidase, which is a hare, initially rapid, but flawed for this application because of the protein denaturation under the conditions of the experiment

    Intracellular Tracking of Single Native Molecules with Electroporation-Delivered Quantum Dots

    No full text
    Quantum dots (QDs) have found a wide range of biological applications as fluorophores due to their extraordinary brightness and high photostability that are far superior to those of conventional organic dyes. These traits are particularly appealing for studying cell biology under a cellular autofluorescence background and with a long observation period. However, it remains the most important open challenge to target QDs at <i>native</i> intracellular molecules and organelles in <i>live</i> cells. Endocytosis-based delivery methods lead to QDs encapsulated in vesicles that have their surface biorecognition element hidden from the intracellular environment. The probing of native molecules using QDs has been seriously hindered by the lack of consistent approaches for delivery of QDs with exposed surface groups. In this study, we demonstrate that electroporation (i.e., the application of short electric pulses for cell permeabilization) generates reproducible results for delivering QDs into cells. We show evidence that electroporation-based delivery does not involve endocytosis or vesicle encapsulation of QDs. The amount of QD loading and the resulting cell viability can be adjusted by varying the parameters associated with the electroporation operation. To demonstrate the application of our approach for intracellular targeting, we study single-molecule motility of kinesin in live cells by labeling native kinesins using electroporation-delivered QDs. We envision that electroporation may serve as a simple and universal tool for delivering QDs into cells to label and probe native molecules and organelles

    Intracellular Tracking of Single Native Molecules with Electroporation-Delivered Quantum Dots

    No full text
    Quantum dots (QDs) have found a wide range of biological applications as fluorophores due to their extraordinary brightness and high photostability that are far superior to those of conventional organic dyes. These traits are particularly appealing for studying cell biology under a cellular autofluorescence background and with a long observation period. However, it remains the most important open challenge to target QDs at <i>native</i> intracellular molecules and organelles in <i>live</i> cells. Endocytosis-based delivery methods lead to QDs encapsulated in vesicles that have their surface biorecognition element hidden from the intracellular environment. The probing of native molecules using QDs has been seriously hindered by the lack of consistent approaches for delivery of QDs with exposed surface groups. In this study, we demonstrate that electroporation (i.e., the application of short electric pulses for cell permeabilization) generates reproducible results for delivering QDs into cells. We show evidence that electroporation-based delivery does not involve endocytosis or vesicle encapsulation of QDs. The amount of QD loading and the resulting cell viability can be adjusted by varying the parameters associated with the electroporation operation. To demonstrate the application of our approach for intracellular targeting, we study single-molecule motility of kinesin in live cells by labeling native kinesins using electroporation-delivered QDs. We envision that electroporation may serve as a simple and universal tool for delivering QDs into cells to label and probe native molecules and organelles
    corecore