1,744 research outputs found

    Effects of season and waterbody on transparency tube estimates of suspended sediment in large rivers

    Get PDF
    This paper reports the measurement (N>132) of the effect of river and season on transparency in cm and Total Suspended Solids in mg/L in a navigational pool of the Ohio River and one of its tributaries, the Muskingum River. Both river of origin and season affected water transparency. The transparency-TSS relationship was stronger in spring (R2 = 0.894) than autumn (R2 =0.710), with an overall correlation of R2=0.86 for N=93 observations in both water bodies and seasons. Regression equations for the transparency-TSS relationships for the two rivers under low (autumn) and high (spring) flow conditions were developed. Our study demonstrates that properly trained volunteers can assist with rapid assessment of water turbidity from suspended solids in large rivers, reservoirs and lakes, but seasonal calibration of these measures will improve accuracy of sediment monitoring and management.Keywords: Transparency tube, turbidity, monitoring, sediment transport, citizen science, water qualit

    Energy Distribution associated with Static Axisymmetric Solutions

    Full text link
    This paper has been addressed to a very old but burning problem of energy in General Relativity. We evaluate energy and momentum densities for the static and axisymmetric solutions. This specializes to two metrics, i.e., Erez-Rosen and the gamma metrics, belonging to the Weyl class. We apply four well-known prescriptions of Einstein, Landau-Lifshitz, Papaterou and Mo¨\ddot{o}ller to compute energy-momentum density components. We obtain that these prescriptions do not provide similar energy density, however momentum becomes constant in each case. The results can be matched under particular boundary conditions.Comment: 18 pages, accepted for publication in Astrophysics and SpaceScienc

    Energy and Momentum densities of cosmological models, with equation of state ρ=μ\rho=\mu, in general relativity and teleparallel gravity

    Full text link
    We calculated the energy and momentum densities of stiff fluid solutions, using Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum complexes, in both general relativity and teleparallel gravity. In our analysis we get different results comparing the aforementioned complexes with each other when calculated in the same gravitational theory, either this is in general relativity and teleparallel gravity. However, interestingly enough, each complex's value is the same either in general relativity or teleparallel gravity. Our results sustain that (i) general relativity or teleparallel gravity are equivalent theories (ii) different energy-momentum complexes do not provide the same energy and momentum densities neither in general relativity nor in teleparallel gravity. In the context of the theory of teleparallel gravity, the vector and axial-vector parts of the torsion are obtained. We show that the axial-vector torsion vanishes for the space-time under study.Comment: 15 pages, no figures, Minor typos corrected; version to appear in International Journal of Theoretical Physic

    Energy-Momentum Localization for a Space-Time Geometry Exterior to a Black Hole in the Brane World

    Full text link
    In general relativity one of the most fundamental issues consists in defining a generally acceptable definition for the energy-momentum density. As a consequence, many coordinate-dependent definitions have been presented, whereby some of them utilize appropriate energy-momentum complexes. We investigate the energy-momentum distribution for a metric exterior to a spherically symmetric black hole in the brane world by applying the Landau-Lifshitz and Weinberg prescriptions. In both the aforesaid prescriptions, the energy thus obtained depends on the radial coordinate, the mass of the black hole and a parameter λ0\lambda_{0}, while all the momenta are found to be zero. It is shown that for a special value of the parameter λ0\lambda_{0}, the Schwarzschild space-time geometry is recovered. Some particular and limiting cases are also discussed.Comment: 10 pages, sections 1 and 3 slightly modified, references modified and adde

    Beautiful Mirrors and Precision Electroweak Data

    Get PDF
    The Standard Model (SM) with a light Higgs boson provides a very good description of the precision electroweak observable data coming from the LEP, SLD and Tevatron experiments. Most of the observables, with the notable exception of the forward-backward asymmetry of the bottom quark, point towards a Higgs mass far below its current experimental bound. The disagreement, within the SM, between the values for the weak mixing angle as obtained from the measurement of the leptonic and hadronic asymmetries at lepton colliders, may be taken to indicate new physics contributions to the precision electroweak observables. In this article we investigate the possibility that the inclusion of additional bottom-like quarks could help resolve this discrepancy. Two inequivalent assignments for these new quarks are analysed. The resultant fits to the electroweak data show a significant improvement when compared to that obtained in the SM. While in one of the examples analyzed, the exotic quarks are predicted to be light, with masses below 300 GeV, and the Higgs tends to be heavy, in the second one the Higgs is predicted to be light, with a mass below 250 GeV, while the quarks tend to be heavy, with masses of about 800 GeV. The collider signatures associated with the new exotic quarks, as well as the question of unification of couplings within these models and a possible cosmological implication of the new physical degrees of freedom at the weak scale are also discussed.Comment: 21 pages, 4 embedded postscript figures, LaTeX. Two minor corrections performe

    UNDERSTANDING THE DETERMINANTS OF BLOCKCHAIN ADOPTION IN SUPPLY CHAINS: AN EMPIRICAL STUDY IN CHINA

    Get PDF
    This study adopts affordance approach to understand how supply chain managers interpret the possible benefits that can be performed within blockchain-enabled supply chain applications. With a focus on governance efficiency improvement, the impacts of traceability and transparency affordance on uncertainty reduction were examined from the perspective of transaction cost theory in supply chain industry. Partial least squares – structural equation modelling (PLS-SEM) was used to analyze the data collected from 364 experienced supply chain managers in China. The results revealed that traceability affordance exerted significant impacts on environmental and trading partner uncertainty rather than transparency affordance, which in turn affected the adoption intention. This study contributes to the extant literature by embedding transaction cost in blockchain affordances. The findings are useful in guiding practitioners to improve blockchain system design for reducing uncertainties in supply chain environment, leading to a higher adoption rate of blockchain technology

    Energy Distribution in f(R) Gravity

    Full text link
    The well-known energy problem is discussed in f(R) theory of gravity. We use the generalized Landau-Lifshitz energy-momentum complex in the framework of metric f(R) gravity to evaluate the energy density of plane symmetric solutions for some general f(R) models. In particular, this quantity is found for some popular choices of f(R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.Comment: 15 pages, accepted for publication in Gen. Relativ. & Gra

    Lepton Flavor Violation and the Origin of the Seesaw Mechanism

    Get PDF
    The right--handed neutrino mass matrix that is central to the understanding of small neutrino masses via the seesaw mechanism can arise either (i) from renormalizable operators or (ii) from nonrenormalizable or super-renormalizable operators, depending on the symmetries and the Higgs content of the theory beyond the Standard Model. In this paper, we study lepton flavor violating (LFV) effects in the first class of seesaw models wherein the \nu_R Majorana masses arise from renormalizable Yukawa couplings involving a B-L = 2 Higgs field. We present detailed predictions for \tau -> \mu + \gamma and \mu -> e + \gamma branching ratios in these models taking the current neutrino oscillation data into account. Focusing on minimal supergravity models, we find that for a large range of MSSM parameters suggested by the relic abundance of neutralino dark matter and that is consistent with Higgs boson mass and other constraints, these radiative decays are in the range accessible to planned experiments. We compare these predictions with lepton flavor violation in the second class of models arising entirely from the Dirac Yukawa couplings. We study the dependence of the ratio r \equiv B(\mu -> e+\gamma)/B(\tau ->\mu +\gamma) on the MSSM parameters and show that measurement of r can provide crucial insight into the origin of the seesaw mechanism.Comment: 20 pages, Revtex, 7 figure

    Can the Zee Model Explain the Observed Neutrino Data?

    Get PDF
    The eigenvalues and mixing angles in the Zee model are investigated parameter-independently. When we require |\Delta m^2_{12}/\Delta m^2_{23}| \ll 1 in order to understand the solar and atmospheric data simultaneously, the only solution is one which gives bi-maximal mixing. It is pointed out that the observed values \sin^2 2\theta_{solar} \simeq 0.66 in the MSW LMA solution cannot be explained within the framework of the Zee model, because we derive a severe constraint on the value of \sin^2 2 \theta_{solar}, \sin^2 2 \theta_{solar} \geq 1 -(1/16)(\Delta m^2_{solar}/\Delta m^2_{atm})^2.Comment: Latex file, 10 pages, 1 figure, explanations and references added, typos corrected, to be published in Phys.Rev.

    Distribution of Energy-Momentum in a Schwarzschild-Quintessence Space-time Geometry

    Full text link
    An analysis of the energy-momentum localization for a four-dimensional\break Schwarzschild black hole surrounded by quintessence is presented in order to provide expressions for the distributions of energy and momentum. The calculations are performed by using the Landau-Lifshitz and Weinberg energy-momentum complexes. It is shown that all the momenta vanish, while the expression for the energy depends on the mass MM of the black hole, the state parameter wqw_{q} and the normalization factor cc. The special case of wq=2/3w_{q}=-2/3 is also studied, and two limiting cases are examined.Comment: 9 page
    corecore