3,053 research outputs found

    A 32kb 10T subthreshold SRAM array with bit-interleaving and differential read scheme in 90nm CMOS

    Get PDF
    We demonstrate a 10T subthreshold SRAM with an efficient bit-interleaving structure for soft-error tolerance and a differential read scheme for improved stability. The 32kb (256128) SRAM array is fabricated in 90nm CMOS and operates at 31.25kHz at 0.18V With more aggressive wordline boosting, the V DD can be reduced to 0.16V At the minimum VDD condition, the operating frequency is 500Hz and the power consumption is 0.123W

    Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR

    Get PDF
    AbstractPeptidoglycan is an essential component of cell wall in Gram-positive bacteria with unknown architecture. In this review, we summarize solid-state NMR approaches to address some of the unknowns in the Gram-positive bacteria peptidoglycan architecture: 1) peptidoglycan backbone conformation, 2) PG-lattice structure, 3) variations in the peptidoglycan architecture and composition, 4) the effects of peptidoglycan bridge-length on the peptidoglycan architecture in Fem mutants, 5) the orientation of glycan strands with respect to the membrane, and 6) the relationship between the peptidoglycan structure and the glycopeptide antibiotic mode of action. Solid-state NMR analyses of Staphylococcus aureus cell wall show that peptidoglycan chains are surprisingly ordered and densely packed. The peptidoglycan disaccharide backbone adopts 4-fold screw helical symmetry with the disaccharide unit periodicity of 40Å. Peptidoglycan lattice in the S. aureus cell wall is formed by cross-linked PG stems that have parallel orientations. The structural characterization of Fem-mutants of S. aureus with varying lengths of bridge structures suggests that the PG-bridge length is an important determining factor for the PG architecture. This article is part of a Special Issue entitled: NMR Spectroscopy for Atomistic Views of Biomembranes and Cell Surfaces. Guest Editors: Lynette Cegelski and David P. Weliky

    Noise Source Identification of Small Fan-BLDC Motor System for Refrigerators

    Get PDF
    Noise levels in household appliances are increasingly attracting attention from manufacturers and customers. Legislation is becoming more severe on acceptable noise levels and low noise is a major marketing point for many products. The latest trend in the refrigerator manufacturing industry is to use brushless DC (BLDC) motors instead of induction motors in order to reduce energy consumption and noise radiation. However, cogging torque from BLDC motor is an undesirable effect that prevents the smooth rotation of the rotor and results in noise. This paper presents a practical approach for identifying the source of excessive noise in the small fan-motor system for household refrigerators. The source is presumed to a mechanical resonance excited by torque ripple of the BLDC motor. By using finite element analysis, natural frequencies and mode shapes of the rotating part of the system are obtained and they are compared with experimental mode shapes obtained by electronic torsional excitation test which uses BLDC motor itself as an exciter. Two experimental validations are carried out to confirm the reduction of excessive noise

    RpS3, a DNA repair endonuclease and ribosomal protein, is involved in apoptosis

    Get PDF
    AbstractIt is known that mammalian rpS3 functions as a DNA repair endonuclease and ribosomal protein S3. It was also observed that several ribosomal proteins or DNA repair enzymes are related to apoptosis. We report here a third function of rpS3, induction of apoptosis. The localization of green fluorescent protein (GFP)-rpS3 is changed to the nuclear membrane when lymphocytic cells undergo rpS3-induced apoptosis. Transient expression of GFP-rpS3 activates caspase-8/caspase-3 and sensitizes cytokine-induced apoptosis. Deletion analysis reveals that the two functions of rpS3, DNA repair and apoptosis, use independent functional domains

    Ultraviolet photodepletion spectroscopy of dibenzo-18-crown-6-ether complexes with alkali metal cations

    Get PDF
    Ultraviolet photodepletion spectra of dibenzo-18-crown-6-ether complexes with alkali metal cations (M+-DB18C6, M = Cs, Rb, K, Na, and Li) were obtained in the gas phase using electrospray ionization quadrupole ion-trap reflectron time-of-flight mass spectrometry. The spectra exhibited a few distinct absorption bands in the wavenumber region of 35450−37800 cm^(−1). The lowest-energy band was tentatively assigned to be the origin of the S_0-S_1 transition, and the second band to a vibronic transition arising from the “benzene breathing” mode in conjunction with symmetric or asymmetric stretching vibration of the bonds between the metal cation and the oxygen atoms in DB18C6. The red shifts of the origin bands were observed in the spectra as the size of the metal cation in M^+-DB18C6 increased from Li^+ to Cs^+. We suggested that these red shifts arose mainly from the decrease in the binding energies of larger-sized metal cations to DB18C6 at the electronic ground state. These size effects of the metal cations on the geometric and electronic structures, and the binding properties of the complexes at the S_0 and S_1 states were further elucidated by theoretical calculations using density functional and time-dependent density functional theories

    In vivo fluorescence imaging of conjunctival goblet cells

    Get PDF
    Conjunctival goblet cells (GCs) are specialized epithelial cells that secrete mucins onto the ocular surface to maintain the wet environment. Assessment of GCs is important because various ocular surface diseases are associated with their loss. Although there are GC assessment methods available, the current methods are either invasive or difficult to use. In this report, we developed a simple and non-invasive GC assessment method based on fluorescence imaging. Moxifloxacin ophthalmic solution was used to label GCs via topical administration, and then various fluorescence microscopies could image GCs in high contrasts. Fluorescence imaging of GCs in the mouse conjunctiva was confirmed by both confocal reflection microscopy and histology with Periodic acid-Schiff (PAS) labeling. Real-time in-vivo conjunctival GC imaging was demonstrated in a rat model by using both confocal fluorescence microscopy and simple wide-field fluorescence microscopy. Different GC densities were observed in the forniceal and bulbar conjunctivas of the rat eye. Moxifloxacin based fluorescence imaging provides high-contrast images of conjunctival GCs non-invasively and could be useful for the study or diagnosis of GC related ocular surface diseases.11Ysciescopu

    Effect of moderate-intensity statin therapy on plaque inflammation in patients with acute coronary syndrome: A prospective interventional study evaluated by 18F-FDG PET/CT of the carotid artery

    Get PDF
    Background: Asian patients with acute coronary syndrome (ACS) are frequently prescribed moderate- -intensity statin in real practice, even during the early stage of ACS. Under assessment herein was the effect of moderate-intensity statin therapy on the resolution of plaque inflammation during the first month after ACS, a period with highest recurrent ischemic events, using dual time point 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT).Methods: This prospective study included statin-naïve patients with ACS and non-calcified carotid plaques (≥ 3 mm on ultrasound images). Baseline FDG PET/CT images of the carotid arteries of the patients were obtained. Then, all patients received atorvastatin (20 mg/day); follow-up FDG PET/CT images of the carotid arteries were then obtained after 1 month of therapy. The primary endpoint measurement was the change in the target-to-background ratio (TBR) of the carotid artery between the initial and follow-up FDG PET/CT scans.Results: Thirteen ACS patients completed the initial and follow-up FDG PET/CT scans. Moderate-intensity statin therapy failed to reduce plaque inflammation at 1 month after ACS (TBR 1.60 ± 0.20 at baseline vs. 1.50 ± 0.40 after therapy; p = 0.422) but significantly reduced serum low-density lipoprotein cholesterol (LDL-C) levels (mean LDL-C 101.2 ± 21.1 mg/dL at baseline vs. 70.7 ± 12.4 mg/dL after therapy; p < 0.001). Changes in the TBR and serum LDL-C levels were not correlated (r = –0.27, p = 0.243).Conclusions: Dual time point FDG PET/CT imaging demonstrates that moderate-intensity statin therapy was insufficient in suppressed plaque inflammation within the first month after ACS in Asian patients, even though achieving target LDL levels

    Novel water filtration of saline water in the outermost layer of mangrove roots

    Get PDF
    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na+ ions are filtered at the first sublayer of the outermost layer. The high blockage of Na+ ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na+ ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.Creative Research Initiative (Diagnosis of Biofluid Flow Phenomena and Biomimic Research) of the Ministry of Science, ICT and Future Planning (MSIP) , National Research Foundation (NRF) of Korea , ICT R&D program of MSIP/IITP (Korea

    Distance and Reddening of the Isolated Dwarf Irregular Galaxy NGC 1156

    Full text link
    We present a photometric estimation of the distance and reddening values to the dwarf irregular galaxy NGC 1156, which is one of the best targets to study the isolated dwarf galaxies in the nearby universe. We have used the imaging data sets of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) High Resolution Channel (HRC) of the central region of NGC 1156 (26" X 29") available in the HST archive for this study. From the (U-B, B-V) color-color diagram, we first estimate the total (foreground + internal) reddening toward NGC 1156 of E(B-V) =0.35 +/- 0.05 mag, whereas only the foreground reddening was previously known to be E(B-V)=0.16 mag (Burstein & Heiles) or 0.24 mag (Schlegel, Finkbeiner, & Davis). Based on the brightest stars method, selecting the three brightest blue supergiant (BSG) stars with mean B magnitude of = 21.94 mag and the three brightest red supergiant (RSG) stars with mean V magnitude of = 22.76 mag, we derive the distance modulus to NGC 1156 to be (m-M)_{0,BSG} = 29.55 mag and (m-M)_{0,RSG} = 29.16 mag. By using weights of 1 and 1.5 for the distance moduli from using the BSGs and the RSGs, respectively, we finally obtain the weighted mean distance modulus to NGC 1156 (m-M)_0 = 29.39 +/- 0.20 mag (d = 7.6 +/- 0.7 Mpc), which is in very good agreement with the previous estimates. Combining the photometry data of this study with those of Karachentsev et al. gives smaller distance to NGC 1156, which is discussed together with the limits of the data.Comment: 18 pages, 8 figures, Accepted by PASJ (2012 Apr issue
    corecore