115,707 research outputs found

    Pulse Profiles, Spectra and Polarization Characteristics of Non-Thermal Emissions from the Crab-Like Pulsars

    Full text link
    We discuss non-thermal emission mechanism of the Crab-like pulsars with both a two-dimensional electrodynamical study and a three-dimensional model. We investigate the emission process in the outer gap accelerator. In the two-dimensional electrodynamical study, we solve the Poisson equation of the accelerating electric field in the outer gap and the equation of motion of the primary particles with the synchrotron and the curvature radiation process and the pair-creation process. We show a solved gap structure which produces a consistent gamma-ray spectrum with EGRET observation. Based on the two-dimensional model, we conduct a three-dimensional emission model to calculate the synchrotron and the inverse-Compton processes of the secondary pairs produced outside the outer gap. We calculate the pulse profiles, the phase-resolved spectra and the polarization characteristics in optical to γ\gamma-ray bands to compare the observation of the Crab pulsar and PSR B0540-69. For the Crab pulsar, we find that the outer gap geometry extending from near the stellar surface to near the light cylinder produces a complex morphology change of the pulse profiles as a function of the photon energy. This predicted morphology change is quite similar with that of the observations. The calculated phase-resolved spectra are consistent with the data through optical to the γ\gamma-ray bands. We demonstrate that the 10∼\sim20 % of the polarization degree in the optical emissions from the Crab pulsar and the Vela pulsar are explained by the synchrotron emissions with the particle gyration motion.Comment: 39 pages, 11 figures, Accepted for publication in Ap

    A Study of the LEP and SLD Measurements of AbA_b

    Get PDF
    A systematic study is made of the data dependence of the parameter AbA_{\rm{b}}, that, since 1995, has shown a deviation from the Standard Model prediction of between 2.4 and 3.1 standard deviations. Issues addressed include: the effect of particular measurements, values found by individual experiments, LEP/SLD comparison, and the treatment of systematic errors. The effect, currently at the 2.4σ\sigma level, is found to vary in the range from 1.7σ\sigma to 2.9σ\sigma by excluding marginal or particularly sensitive data. Since essentially the full LEP and SLD Z decay data sets are now analysed the meaning of the deviation, (new physics, or marginal statistical fluctuation) is unlikely to be given by the present generation of colliders.Comment: 15 pages 7 figures 7 table

    Systolic VLSI for Kalman filters

    Get PDF
    A novel two-dimensional parallel computing method for real-time Kalman filtering is presented. The mathematical formulation of a Kalman filter algorithm is rearranged to be the type of Faddeev algorithm for generalizing signal processing. The data flow mapping from the Faddeev algorithm to a two-dimensional concurrent computing structure is developed. The architecture of the resulting processor cells is regular, simple, expandable, and therefore naturally suitable for VLSI chip implementation. The computing methodology and the two-dimensional systolic arrays are useful for Kalman filter applications as well as other matrix/vector based algebraic computations

    Fitting Precision Electroweak Data with Exotic Heavy Quarks

    Get PDF
    The 1999 precision electroweak data from LEP and SLC persist in showing some slight discrepancies from the assumed standard model, mostly regarding bb and cc quarks. We show how their mixing with exotic heavy quarks could result in a more consistent fit of all the data, including two unconventional interpretations of the top quark.Comment: 7 pages, no figure, 2 typos corrected, 1 reference update

    Estimating Form Factors of Bs→Ds(∗)B_s\rightarrow D_s^{(*)} and their Applications to Semi-leptonic and Non-leptonic Decays

    Full text link
    Bs0→Ds−B_s^0\rightarrow D_s^{-} and Bs0→Ds∗−B_s^0\rightarrow D_s^{*-} weak transition form factors are estimated for the whole physical region with a method based on an instantaneous approximated Mandelstam formulation of transition matrix elements and the instantaneous Bethe-Salpeter equation. We apply the estimated form factors to branching ratios, CP asymmetries and polarization fractions of non-leptonic decays within the factorization approximation. And we study the non-factorizable effects and annihilation contributions with the perturbative QCD approach. The branching ratios of semi-leptonic Bs0→Ds(∗)−l+νlB_s^0\rightarrow D_s^{(*)-}l^+\nu_l decays are also evaluated. We show that the calculated decay rates agree well with the available experimental data. The longitudinal polarization fraction of Bs→Ds∗V(A)B_s\rightarrow D_s^*V(A) decays are ∼0.8\sim0.8 when V(A)V(A) denotes a light meson, and are ∼0.5\sim0.5 when V(A)V(A) denotes a DqD_q (q=d,sq=d,s) meson.Comment: Final version published in J Phys. G 39 (2012) 045002 (Title also changed

    Scaling studies of solar pumped lasers

    Get PDF
    A progress report of scaling studies of solar pumped lasers is presented. Conversion of blackbody radiation into laser light has been demonstrated in this study. Parametric studies of the variation of laser mixture composition and laser gas temperature were carried out for CO2 and N2O gases. Theoretical analysis and modeling of the system have been performed. Reasonable agreement between predictions in the parameter variation and the experimental results have been obtained. Almost 200 mW of laser output at 10.6 micron was achieved by placing a small sapphire laser tube inside an oven at 1500 K the tube was filled with CO2 laser gas mixture and cooled by longitudinal nitrogen gas flow

    Scheduling algorithm for mission planning and logistics evaluation users' guide

    Get PDF
    The scheduling algorithm for mission planning and logistics evaluation (SAMPLE) program is a mission planning tool composed of three subsystems; the mission payloads subsystem (MPLS), which generates a list of feasible combinations from a payload model for a given calendar year; GREEDY, which is a heuristic model used to find the best traffic model; and the operations simulation and resources scheduling subsystem (OSARS), which determines traffic model feasibility for available resources. The SAMPLE provides the user with options to allow the execution of MPLS, GREEDY, GREEDY-OSARS, or MPLS-GREEDY-OSARS
    • …
    corecore