76,865 research outputs found
The NLO QCD Corrections to Meson Production in Decays
The decay width of to meson is evaluated at the next-to-leading
order(NLO) accuracy in strong interaction. Numerical calculation shows that the
NLO correction to this process is remarkable. The quantum
chromodynamics(QCD)renormalization scale dependence of the results is obviously
depressed, and hence the uncertainties lying in the leading order calculation
are reduced.Comment: 14 pages, 7 figures; references added; expressions and typos ammende
Energy dependence of Normal Branch Oscillation in Scorpius X-1
We report the energy dependence of normal branch oscillations (NBOs) in
Scorpius X-1, a low-mass X-ray binary Z-source. Three characteristic quantities
(centroid frequency, quality factor, and fractional root-mean-squared (rms)
amplitude) of a quasi-periodic oscillation signal as functions of photon energy
are investigated. We found that, although it is not yet statistically well
established, there is a signature indicating that the NBO centroid frequency
decreases with increasing photon energy when it is below 6-8 keV, which turns
out to be positively correlated with the photon energy at the higher energy
side. In addition, the rms amplitude increases significantly with the photon
energy below 13 keV and then decreases in the energy band of 13-20 keV. There
is no clear dependence on photon energy for the quality factor. Based on these
results, we suggest that the NBO originates mainly in the transition layer.Comment: 6 pages, 4 figure
Non-Markovian master equation for a damped oscillator with time-varying parameters
We derive an exact non-Markovian master equation that generalizes the
previous work [Hu, Paz and Zhang, Phys. Rev. D {\bf 45}, 2843 (1992)] to damped
harmonic oscillators with time-varying parameters. This is achieved by
exploiting the linearity of the system and operator solution in Heisenberg
picture. Our equation governs the non-Markovian quantum dynamics when the
system is modulated by external devices. As an application, we apply our
equation to parity kick decoupling problems. The time-dependent dissipative
coefficients in the master equation are shown to be modified drastically when
the system is driven by pulses. For coherence protection to be effective,
our numerical results indicate that kicking period should be shorter than
memory time of the bath. The effects of using soft pulses in an ohmic bath are
also discussed
Estimating Form Factors of and their Applications to Semi-leptonic and Non-leptonic Decays
and weak transition
form factors are estimated for the whole physical region with a method based on
an instantaneous approximated Mandelstam formulation of transition matrix
elements and the instantaneous Bethe-Salpeter equation. We apply the estimated
form factors to branching ratios, CP asymmetries and polarization fractions of
non-leptonic decays within the factorization approximation. And we study the
non-factorizable effects and annihilation contributions with the perturbative
QCD approach. The branching ratios of semi-leptonic decays are also evaluated. We show that the calculated
decay rates agree well with the available experimental data. The longitudinal
polarization fraction of decays are when
denotes a light meson, and are when denotes a
() meson.Comment: Final version published in J Phys. G 39 (2012) 045002 (Title also
changed
The Decays to -wave Charmonium by Improved Bethe-Salpeter Approach
We re-calculate the exclusive semileptonic and nonleptonic decays of
meson to a -wave charmonium in terms of the improved Bethe-Salpeter (B-S)
approach, which is developed recently. Here the widths for the exclusive
semileptonic and nonleptonic decays, the form factors, and the charged lepton
spectrums for the semileptonic decays are precisely calculated. To test the
concerned approach by comparing with experimental measurements when the
experimental data are available, and to have comparisons with the other
approaches the results obtained by the approach and those by some approaches
else as well as the original B-S approach, which appeared in literature, are
comparatively presented and discussed.Comment: 33 pages, 5 figures, 3 table
The magnetic dipole transitions in the binding system
The magnetic dipole transitions between the vector mesons and their
relevant pseudoscalar mesons (, , , ,
and etc, the binding states of system) of
the family are interesting. To see the `hyperfine' splitting due to
spin-spin interaction is an important topic for understanding the spin-spin
interaction and the spectrum of the the binding system. The
knowledge about the magnetic dipole transitions is also very useful for
identifying the vector boson mesons experimentally, whose masses are
just slightly above the masses of their relevant pseudoscalar mesons
accordingly. Considering the possibility to observe the vector mesons via the
transitions at factory and the potentially usages of the theoretical
estimate on the transitions, we fucus our efforts on calculating the magnetic
dipole transitions, i.e. precisely to calculate the rates for the transitions
such as decays and , and particularly
work in the Behte-Salpeter framework. In the estimate, as a typical example, we
carefully investigate the dependance of the rate
on the mass difference as well.Comment: 10 pages, 2 figures, 1 tabl
- …