76,865 research outputs found

    The NLO QCD Corrections to BcB_c Meson Production in Z0Z^0 Decays

    Full text link
    The decay width of Z0Z^0 to BcB_c meson is evaluated at the next-to-leading order(NLO) accuracy in strong interaction. Numerical calculation shows that the NLO correction to this process is remarkable. The quantum chromodynamics(QCD)renormalization scale dependence of the results is obviously depressed, and hence the uncertainties lying in the leading order calculation are reduced.Comment: 14 pages, 7 figures; references added; expressions and typos ammende

    Energy dependence of Normal Branch Oscillation in Scorpius X-1

    Full text link
    We report the energy dependence of normal branch oscillations (NBOs) in Scorpius X-1, a low-mass X-ray binary Z-source. Three characteristic quantities (centroid frequency, quality factor, and fractional root-mean-squared (rms) amplitude) of a quasi-periodic oscillation signal as functions of photon energy are investigated. We found that, although it is not yet statistically well established, there is a signature indicating that the NBO centroid frequency decreases with increasing photon energy when it is below 6-8 keV, which turns out to be positively correlated with the photon energy at the higher energy side. In addition, the rms amplitude increases significantly with the photon energy below 13 keV and then decreases in the energy band of 13-20 keV. There is no clear dependence on photon energy for the quality factor. Based on these results, we suggest that the NBO originates mainly in the transition layer.Comment: 6 pages, 4 figure

    Non-Markovian master equation for a damped oscillator with time-varying parameters

    Full text link
    We derive an exact non-Markovian master equation that generalizes the previous work [Hu, Paz and Zhang, Phys. Rev. D {\bf 45}, 2843 (1992)] to damped harmonic oscillators with time-varying parameters. This is achieved by exploiting the linearity of the system and operator solution in Heisenberg picture. Our equation governs the non-Markovian quantum dynamics when the system is modulated by external devices. As an application, we apply our equation to parity kick decoupling problems. The time-dependent dissipative coefficients in the master equation are shown to be modified drastically when the system is driven by π\pi pulses. For coherence protection to be effective, our numerical results indicate that kicking period should be shorter than memory time of the bath. The effects of using soft pulses in an ohmic bath are also discussed

    Estimating Form Factors of Bs→Ds(∗)B_s\rightarrow D_s^{(*)} and their Applications to Semi-leptonic and Non-leptonic Decays

    Full text link
    Bs0→Ds−B_s^0\rightarrow D_s^{-} and Bs0→Ds∗−B_s^0\rightarrow D_s^{*-} weak transition form factors are estimated for the whole physical region with a method based on an instantaneous approximated Mandelstam formulation of transition matrix elements and the instantaneous Bethe-Salpeter equation. We apply the estimated form factors to branching ratios, CP asymmetries and polarization fractions of non-leptonic decays within the factorization approximation. And we study the non-factorizable effects and annihilation contributions with the perturbative QCD approach. The branching ratios of semi-leptonic Bs0→Ds(∗)−l+νlB_s^0\rightarrow D_s^{(*)-}l^+\nu_l decays are also evaluated. We show that the calculated decay rates agree well with the available experimental data. The longitudinal polarization fraction of Bs→Ds∗V(A)B_s\rightarrow D_s^*V(A) decays are ∼0.8\sim0.8 when V(A)V(A) denotes a light meson, and are ∼0.5\sim0.5 when V(A)V(A) denotes a DqD_q (q=d,sq=d,s) meson.Comment: Final version published in J Phys. G 39 (2012) 045002 (Title also changed

    The BcB_c Decays to PP-wave Charmonium by Improved Bethe-Salpeter Approach

    Full text link
    We re-calculate the exclusive semileptonic and nonleptonic decays of BcB_c meson to a PP-wave charmonium in terms of the improved Bethe-Salpeter (B-S) approach, which is developed recently. Here the widths for the exclusive semileptonic and nonleptonic decays, the form factors, and the charged lepton spectrums for the semileptonic decays are precisely calculated. To test the concerned approach by comparing with experimental measurements when the experimental data are available, and to have comparisons with the other approaches the results obtained by the approach and those by some approaches else as well as the original B-S approach, which appeared in literature, are comparatively presented and discussed.Comment: 33 pages, 5 figures, 3 table

    The magnetic dipole transitions in the (cbˉ)(c\bar{b}) binding system

    Full text link
    The magnetic dipole transitions between the vector mesons Bc∗B_c^* and their relevant pseudoscalar mesons BcB_c (BcB_c, Bc∗B_c^*, Bc(2S)B_c(2S), Bc∗(2S)B_c^*(2S), Bc(3S)B_c(3S) and Bc∗(3S)B_c^*(3S) etc, the binding states of (cbˉ)(c\bar{b}) system) of the BcB_c family are interesting. To see the `hyperfine' splitting due to spin-spin interaction is an important topic for understanding the spin-spin interaction and the spectrum of the the (cbˉ)(c\bar{b}) binding system. The knowledge about the magnetic dipole transitions is also very useful for identifying the vector boson Bc∗B_c^* mesons experimentally, whose masses are just slightly above the masses of their relevant pseudoscalar mesons BcB_c accordingly. Considering the possibility to observe the vector mesons via the transitions at Z0Z^0 factory and the potentially usages of the theoretical estimate on the transitions, we fucus our efforts on calculating the magnetic dipole transitions, i.e. precisely to calculate the rates for the transitions such as decays Bc∗→BcγB_c^*\to B_c\gamma and Bc∗→Bce+e−B_c^*\to B_c e^+e^-, and particularly work in the Behte-Salpeter framework. In the estimate, as a typical example, we carefully investigate the dependance of the rate Γ(Bc∗→Bcγ)\Gamma(B_c^*\to B_c\gamma) on the mass difference ΔM=MBc∗−MBc\Delta M=M_{B_c^*}-M_{B_c} as well.Comment: 10 pages, 2 figures, 1 tabl
    • …
    corecore