8,877 research outputs found

    Non-thermal radiation of black hole off canonical typicality

    Full text link
    We study the Hawking radiation of black holes by considering the canonical typicality. For the universe consisting of black holes and their outer part, we directly obtain a non-thermal radiation spectrum of an arbitrary black hole from its entropy, which only depends on a few external qualities (known as hairs), such as mass, charge, and angular momentum. Our result shows that the spectrum of the non-thermal radiation is independent of the detailed quantum tunneling dynamics across black hole horizon. We prove that the black hole information paradox is naturally resolved by taking account the correlation between black hole and its radiation in our approach.Comment: 5 pages, 1 figure, pulished on Europhysics Letters, comments are welcome

    Properties of the Planetary Caustic Perturbation

    Full text link
    Just two of 10 extrasolar planets found by microlensing have been detected by the planetary caustic despite the higher probability of planet detection relative to the central caustic which has been responsible for four extrasolar planet detections. This is because the perturbations induced by the planetary caustic are unpredictable, thus making it difficult to carry out strategic observations. However, if future high-cadence monitoring surveys are conducted, the majority of planetary caustic events including the events by free-floating planets and wide-separation planets would be detected. Hence, understanding the planetary caustic perturbations becomes important. In this paper, we investigate in detail the pattern of the planetary caustic perturbations. From this study, we find three properties of the planetary caustic perturbations. First, planetary systems with the same star-planet separation (s) basically produce perturbations of constant strength regardless of the planet/star mass ratio (q), but the duration of each perturbation scales with sqrt{q}. Second, close planetary systems with the same separation produce essentially the same negative perturbations between two triangular-shaped caustics regardless of q, but the duration of the perturbations scales with sqrt{q}. Third, the positive perturbations for planetary systems with the same mass ratio become stronger as the caustic shrinks with the increasing |log s|, while the negative perturbations become weaker. We estimate the degeneracy in the determination of q that occurs in planetary caustic events. From this, we find that the mass ratio can be more precisely determined as q increases and |log s| decreases. We also find that the degeneracy range of events for which the source star passes close to the planetary caustic is usually very narrow, and thus it would not significantly affect the determination of q.Comment: 5 pages, 3 figures, 2 tables, accepted in MNRA
    • ā€¦
    corecore