1,646 research outputs found

    TOPYDE: A Tool for Physical Database Design

    Get PDF
    We describe a tool for physical database design based on a combination of theoretical and pragmatic approaches. The tool takes as input a relational schema, the workload defined on the schema, and some additional database characteristics and produces as output a physical schema. For the time being, the tool is tuned towards Ingres

    On the Selection of Optimal Index Configuration in OO Databases

    Get PDF
    An operation in object-oriented databases gives rise to the processing of a path. Several database operations may result into the same path. The authors address the problem of optimal index configuration for a single path. As it is shown an optimal index configuration for a path can be achieved by splitting the path into subpaths and by indexing each subpath with the optimal index organization. The authors present an algorithm which is able to select an optimal index configuration for a given path. The authors consider a limited number of existing indexing techniques (simple index, inherited index, nested inherited index, multi-index, and multi-inherited index) but the principles of the algorithm remain the same adding more indexing technique

    A new representation of emotion in affective computing

    Get PDF
    In the recent years, increasing attention has been paid to the area of affective computing, which deals with the complex phenomenon of human emotion. Therefore, a model for describing, structuring, and categorizing emotional states of users is required. The dimensional emotion theory is one of widely used theoretical foundations for categorization of emotions. According to the dimensional theory, emotional states are projected to the affective space, which has two dimensions: valence and arousal. In order to navigate in the affective space, Cartesian coordinate system is used, where emotion quality is defined by combination of valence and arousal. In this paper, we propose another representation of the affective space with polar coordinate system. The key advantages of such a representation include (1) capability to account not only for emotion quality, but also for emotion intensity, (2) reasonable explanation of the location of neutral emotion in the affective space, and (3) straightforward interpretation of the meaning of an emotional state (quality defined by angle and intensity defined by distance from the origin). Although in our experiment most of the induced motions can be differentiated with polar coordinate system, further investigation is still needed to find out either Cartesian or polar coordinates system represents affective space better in practice

    Real-time N-finder processing algorithms for hyperspectral imagery

    Get PDF
    N-finder algorithm (N-FINDR) is probably one of most popular and widely used algorithms for endmember extraction in hyperspectral imagery. When it comes to practical implementation, four major obstacles need to be overcome. One is the number of endmembers which must be known a priori. A second one is the use of random initial endmembers to initialize N-FINDR, which generally results in different sets of final extracted endmembers. Consequently, the results are inconsistent and not reproducible. A third one is requirement of dimensionality reduction (DR) where different used DR techniques produce different results. Finally yet importantly, it is the very expensive computational cost caused by an exhaustive search for endmembers all together simultaneously. This paper re-designs N-FINDR in a real time processing fashion to cope with these issues. Four versions of Real Time (RT) N-FINDR are developed, RT Iterative N-FINDR (RT IN-FINDR), RT SeQuential N-FINDR (RT SQ N-FINDR), RT Circular N-FINDR, RT SuCcessive N-FINDR (RT SC N-FINDR), each of which has its own merit for implementation. Experimental results demonstrate that real time processing algorithms perform as well as their counterparts with no real-time processing

    B_c meson rare decays in the light-cone quark model

    Full text link
    We investigate the rare decays BcDs(1968)ˉB_c \rightarrow D_s(1968) \ell \bar{\ell} and BcDs(2317)ˉB_c\rightarrow D_s^*(2317) \ell \bar{\ell} in the framework of the light-cone quark model (LCQM). The transition form factors are calculated in the space-like region and then analytically continued to the time-like region via exponential parametrization. The branching ratios and longitudinal lepton polarization asymmetries (LPAs) for the two decays are given and compared with each other. The results are helpful to investigating the structure of BcB_c meson and to testing the unitarity of CKM quark mixing matrix. All these results can be tested in the future experiments at the LHC.Comment: 9 pages, 11 figures, version accepted for publication in EPJ

    Search for Solar Axions Produced in the p+d3He+Ap + d \rightarrow\rm{^3He}+ A Reaction

    Full text link
    A search for the axioelectric absorption of 5.5-MeV solar axions produced in the p+d3He+γ(5.5MeV)p+d\rightarrow \rm{^3He}+\gamma(5.5 \rm{MeV}) reaction was performed with two BGO detectors placed inside a low-background setup. A model independent limit on axion-photon and axion-nucleon couplings was obtained: gAe×gAN3.2×109(mA=0)|g_{Ae}\times g_{AN}| \leq 3.2\times 10^{-9} (m_A=0). Constraints on the axion-electron coupling constant were obtained for axions with masses in the (0.11.0)(0.1-1.0) MeV range: gAe(1.89.0)×107g_{Ae}\leq (1.8-9.0)\times 10^{-7}. The solar positron flux from Ae+e+A\rightarrow e^-+e^+ decay was determined for axions with masses mA>2mem_A > 2m_e. Using the existing experimental data on the interplanetary positron flux, a new constraint on the axion-electron coupling constant for axions with masses in the (1.25.4)(1.2-5.4) MeV range was obtained: gAe(15)×1017g_{Ae} \leq (1-5)\times 10^{-17}.Comment: 6 pages, 5 figure

    Coulomb Effects on Electromagnetic Pair Production in Ultrarelativistic Heavy-Ion Collisions

    Get PDF
    We discuss the implications of the eikonal amplitude on the pair production probability in ultrarelativistic heavy-ion transits. In this context the Weizs\"acker-Williams method is shown to be exact in the ultrarelativistic limit, irrespective of the produced particles' mass. A new equivalent single-photon distribution is derived which correctly accounts for the Coulomb distortions. As an immediate application, consequences for unitarity violation in photo-dissociation processes in peripheral heavy-ion encounters are discussed.Comment: 13 pages, 4 .eps figure

    Granular discharge and clogging for tilted hoppers

    Full text link
    We measure the flux of spherical glass beads through a hole as a systematic function of both tilt angle and hole diameter, for two different size beads. The discharge increases with hole diameter in accord with the Beverloo relation for both horizontal and vertical holes, but in the latter case with a larger small-hole cutoff. For large holes the flux decreases linearly in cosine of the tilt angle, vanishing smoothly somewhat below the angle of repose. For small holes it vanishes abruptly at a smaller angle. The conditions for zero flux are discussed in the context of a {\it clogging phase diagram} of flow state vs tilt angle and ratio of hole to grain size

    Thin helium film on a glass substrate

    Full text link
    We investigate by Monte Carlo simulations the structure, energetics and superfluid properties of thin helium-four films (up to four layers) on a glass substrate, at low temperature. The first adsorbed layer is found to be solid and "inert", i.e., atoms are localized and do not participate to quantum exchanges. Additional layers are liquid, with no clear layer separation above the second one. It is found that a single helium-three impurity resides on the outmost layer, not significantly further away from the substrate than helium-four atoms on the same layer.Comment: Six figures, submitted for publication to the Journal of Low Temperature Physic
    corecore