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Abstract N-finder algorithm (N-FINDR) is probably one

of most popular and widely used algorithms for endmem-

ber extraction in hyperspectral imagery. When it comes to

practical implementation, four major obstacles need to be

overcome. One is the number of endmembers which must

be known a priori. A second one is the use of random initial

endmembers to initialize N-FINDR, which generally

results in different sets of final extracted endmembers.

Consequently, the results are inconsistent and not repro-

ducible. A third one is requirement of dimensionality

reduction (DR) where different used DR techniques pro-

duce different results. Finally yet importantly, it is the very

expensive computational cost caused by an exhaustive

search for endmembers all together simultaneously. This

paper re-designs N-FINDR in a real time processing

fashion to cope with these issues. Four versions of Real Time

(RT) N-FINDR are developed, RT Iterative N-FINDR

(RT IN-FINDR), RT SeQuential N-FINDR (RT SQ

N-FINDR), RT Circular N-FINDR, RT SuCcessive N-FINDR

(RT SC N-FINDR), each of which has its own merit for

implementation. Experimental results demonstrate that real

time processing algorithms perform as well as their counter-

parts with no real-time processing.

Keywords N-FINDR � Real-time circular N-FINDR

(RT Circular N-FINDR) � RT iterative N-FINDR

(RT IN-FINDR) � Real-time SeQuential N-FINDR

(RT SQ N-FINDR) � Real-time SuCcessive N-FINDR

(RT SC N-FINDR) � Virtual dimensionality (VD)

1 Introduction

N-finder algorithm (N-FINDR) [1] and pixel purity index

(PPI) [2] are probably the two most popular and widely

used endmember extraction algorithms in the literature.

While both deserve their novelty in algorithm design, they

also unfortunately suffer from drawbacks and disadvan-

tages in practical implementation. Since the issues of

implementing PPI in practical applications have been well

documents in [3–6], this paper mainly focuses on

N-FINDR and addresses several issues in practical imple-

mentation of N-FINDR. The first is determination of the

number of endmembers, denoted by p, which must be

known a priori. Unfortunately, the prior knowledge of p is

never known in real applications. Over the past years,

finding an appropriate value of the p is generally carried

out on a trial-and-error basis empirically. The problem with

this approach is that when the value of p varies, the entire

process of N-FINDR must be re-initiated and previous

results cannot be used for updates. Therefore, it is highly
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desirable as well as very crucial to have the value of p

estimated reliably to avoid repeatedly implementing

N-FINDR over and over again. Recently, this issue has

been addressed by a new concept, called virtual dimen-

sionality (VD) developed in [7, 8] which has shown suc-

cess in estimating the p reliably [5, 9]. A second issue

encountered in implementation of the N-FINDR is the use

of random initial endmembers which produce inconsistent

results in finding endmembers. In other words, different

sets of random initial endmembers may result in different

sets of final extracted endmembers by the N-FINDR.

Consequently, the N-FINDR results are not reproducible.

Fortunately, this dilemma can be resolved by specifying an

appropriate set of initial endmembers obtained by a cus-

tom-designed initialization algorithm [3–5]. A third issue

in implementing the N-FINDR is its very high and

expensive computation complexity. This is primarily

caused by an exhaustive search for an optimal set of p

endmembers simultaneously among all possible p-end-

member combinations in the data. When the data sample

pool is huge, which is indeed the case of hyperspectral

imagery, the computational cost can become un-manage-

able and forbidden. This situation will become much worse

if the N-FINDR must be performed empirically by trying

various values of p. Since the first issue has been well

studied in [3–9], only the last two issues will be addressed

in this paper.

As originally designed, the N-FINDR was developed to

find a set of p vertices that forms a p-vertex simplex to

yield the maximum volume among all possible p-vertex

simplexes. The p vertices of the found simplex with the

maximum volume are assumed the desired endmembers.

Since these p vertices must be found simultaneously, the

N-FINDR is referred to as SiMultaneous N-FINDR (SM

N-FINDR) thereafter in this paper. Two obstacles results

from implementing the SM N-FINDR. In order to find an

optimal set of p endmembers, an exhaustive search must be

conducted for all possible p-vertex simplexes. The total

number of p-combinations, i.e., p-vertex simplexes needed

to be compared will be
N

p

 !
¼ N!
ðn�pÞ!p! provided that the

total number of data sample vectors is N. Second, since two

different p-combinations are generally uncorrelated, one

cannot take advantage of another. If the value of p changes,

the entire exhaustive search must be re-deployed again.

Two approaches are developed in this paper to address this

issue. One is to reduce the search region for the SM

N-FINDR to a feasible region in which potential end-

member candidates are assumed to be present. In doing

so, the exhaustive search performed by SM N-FINDR is

broken up into two iterative processes specified by two

procedures, outer and inner loops where the inner loop

searches for local optimal endmember candidates, called

suboptimal endmembers, while the outer loop updates the

suboptimal endmembers to global optimal endmembers.

The resulting N-FINDR is referred to as Iterative N-FINDR

(IN-FINDR). The other approach is to perform the SM

N-FINDR sequentially so that the desired endmembers can

be generated one after another in a successive manner

instead of generating p endmembers all together simulta-

neously as the SM N-FINDR does. Such a resulting SM

N-FINDR is referred to as SeQuential N-FINDR (SQ

N-FINDR). There are two advantages of implementing the

SQ N-FINDR over the SM N-FINDR. One is that the SQ

N-FINDR takes advantage of previously generated end-

members so that when the value of p grows, the end-

members generated for a small value of p are also part of

endmembers for a larger value of p. Because of such a

sequential process, a second advantage is a significant

reduction of computational cost. However, a trade-off for

these two advantages is that p endmembers produced by

the SQ-N-FINDR may not be an optimal set of p end-

members. Nevertheless, this disadvantage can be remedied

by two ways. One is to use SQ N-FINDR to run the inner

and out loops implemented in the IN-FINDR. Specifically,

the SQ N-FINDR is used to run the inner loop of the

IN-FINDR to produce one final set of p endmembers which

will be further used as a new set of initial p endmembers

for the next run of the SQ N-FINDR in the inner loop

again. The entire process will be run by the SQ N-FINDR

repeatedly over and over again in the outer loop of the

IN-FINDR until the final generated endmembers remain

unchanged. The other is to appeal for a well-designed ini-

tialization algorithm that produces a good set of initial end-

members to be used for the SQ N-FINDR. In this case, the

IN-FINDR only needs to implement the SQ N-FINDR in its

inner loop without using the outer loop to deal with the issue

caused by random endmembers to be used in its inner loop.

By virtue of IN-FINDR and SQ N-FINDR, this paper

develops the concept of real time processing N-FINDR that

actually addresses all the above issues together in one-shot

operation. In order to implement N-FINDR in real time, the

N-FINDR must be carried out in a causal fashion in the sense

that only the data sample vectors that were visited before the

currently being processed data sample vector can be used for

data processing. As a result, the random initial condition

cannot be used to initialize the N-FINDR. In addition, the

dimensionality reduction (DR) required in the N-FINDR

cannot not be implemented since it needs the entire data set

to perform DR. To realize causality imposed on imple-

mentation of the N-FINDR, four versions of real-time (RT)

N-FINDR, RT Iterative N-FINDR (RT IN-FINDR), RT

SeQuential N-FINDR (RT SQ N-FINDR), RT Circular

N-FINDR, RT SuCcessive N-FINDR (RT SC N-FINDR)

are developed, each of which has its own merit in
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implementation. Several benefits can result from real time

processing. First, the issue in using random initial conditions

is resolved. Second, the requirement of DR is also removed.

Third, the computational complexity is significantly

reduced. Finally, it can be implemented by on-board or

on-line processing to save data storage, communication, and

transmission which are particularly important in satellite

space-borne data processing. In order to evaluate various

versions of RT versions of N-FINDR derived in this paper,

experiments using two sets of data, synthetic and real

images are conducted for performance analysis.

The remainder of this paper is organized as follows.

Section 2 develops various real-time processing versions of

the N-FINDR for practical implementation. Section 3 dis-

cusses design rationales and philosophies for real-time

processing of N-FINDR presented in Sect. 2 and their

correlations. Sections 4 and 5 conduct synthetic and real

image experiments for performance evaluation, respec-

tively. Section 6 summarizes the results and concludes

with some remarks.

2 Iterative N-FINDR

In order to develop a real-time processing algorithm for the

commonly used N-FINDR, we need to investigate issues

that prevent it from real-time implementation. To do so,

the N-FINDR is first reviewed and then followed by a

re-designed N-FINDR, referred to as iterative N-FINDR

(IN-FINDR) that can be viewed as a sequential version of

the N-FINDR which will serve as the first step toward

design of real-time processing N-FINDR algorithms.

2.1 N-FINDR

Despite that the original N-FINDR was not available in the

open literature, its idea developed by Winter in [1] can be

briefly described in the following algorithmic implementa-

tion based on our interpretation, referred to as SM N-FINDR

where all endmembers must be found simultaneously.

2.1.1 SM N-FINDR

1. Preprocessing:

(a) Let p be the number of endmembers required to

generate. This prior knowledge should be pro-

vided in advance.

(b) Apply a DR transform such as MNF to reduce the

data dimensionality from L to p - 1 where L is

the total number of spectral bands.

2. Exhaustive search: For any set of p data sample vectors

e1; e2; . . .; ep, we use this set to form a vertex set for a

p-vertex simplex specified by sðe1; e2; . . .; epÞ and

define its volume, Vðe1; e2; . . .; epÞ by

V e1; . . .; ep

� �
¼

det
1 1 . . . 1

e1 e2 . . . ep

� �����
����

p� 1ð Þ! : ð1Þ

Find a set of p data sample vectors in the data set,

denoted by fe�1; e�2; . . .; e�pg; that are used as p vertices

to construct a p-vertex simplex to yield the maximum

value of (1), i.e.,

e�1;e
�
2; . . .;e

�
p

n o
¼ arg max

fe1;e2;...;epg
Vðe1;e2; . . .;epÞ

� �
: ð2Þ

The set of fe�1; e�2; . . .; e�pg is the desired set of p end-

members needed to be found.

3. In order to complete the above exhaustive search in

step 2 a comparison among
N

p

 !
¼ N!
ðn�pÞ!p! p-vertex

simplexes must be conducted in accordance with the

criterion specified by (2).

Figure 1 depicts a block diagram of implementing

N-FINDR where an exhaustive search is conducted via a

counter k starting from 1 to the total = N!/[p!(N - p)!] which is

the total number of p-vertex simplex needed to be compared.

2.2 Iterative N-FINDR

Apparently, the SM N-FINDR described above cannot be

implemented in real time since both the data dimensionality

reduction in step 1 and the exhaustive search in steps 2–3

require availability of the complete set of data sample vectors.

In addition, an exhaustive search for finding an optimal set of

endmembers, fe�1; e�2; . . .; e�pg via (2) requires tremendous

computing time to complete this process by exhausting all

possible p-vertex simplexes. Such excessive computational

complexity is indeed the major hurdle that prevents the SM

N-FINDR from practical applications. In order to cope with

these drawbacks, we re-invent the wheel by re-designing the

SM-NFINDR in a novel fashion that the SM N-FINDR is bro-

ken up into two iterative procedures, an inner loop and an outer

loop, so that the SM-N-FINDR can be carried out sequentially

rather than simultaneously. The resulting N-FINDR is called

IN-FINDR (RT IN-FINDR) and can be described as follows.

2.2.1 Iterative N-FINDR (IN-FINDR)

1. Preprocessing:

(a) Let p be the number of endmembers required to

generate.

(b) Apply a DR transform such as MNF to reduce the

data dimensionality from L to p where L is the

total number of spectral bands.
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2. Initialization: Let feð0Þ1 ; e
ð0Þ
2 ; . . .; e

ð0Þ
p g be a set of initial

vectors randomly selected from the data. k = 0.

3. Outer loop: At iteration k C 1, compare the endmem-

bers extracted at kth and k - 1 iteration. If

feðkÞ1 ; e
ðkÞ
2 ; . . .; e

ðkÞ
p g ¼ feðk�1Þ

1 ; e
ðk�1Þ
2 ; . . .; e

ðk�1Þ
p g;, the

algorithm is terminated and feðkÞ1 ; e
ðkÞ
2 ; . . .; e

ðkÞ
p g is the

final selected endmembers. Otherwise, find the volume

of the simplex specified by the p vertices

e
ðkÞ
1 ; e

ðkÞ
2 ; . . .; e

ðkÞ
p ;VðeðkÞ1 ; e

ðkÞ
2 ; . . .; e

ðkÞ
p Þ defined by (1).

4. Inner loop: For 1 B j B p, we recalculate VðeðkÞ1 ;

. . .; e
ðkÞ
j�1; r; e

ðkÞ
jþ1; . . .; e

ðkÞ
p Þ for all data sample vectors r.

If any of these p recalculated volumes, Vðr; eðkÞ2 ;

. . .; e
ðkÞ
p Þ;VðeðkÞ1 ; r; e

ðkÞ
3 ; . . .; e

ðkÞ
p Þ; …,VðeðkÞ1 ; . . .; e

ðkÞ
p�1; rÞ;

is greater than VðeðkÞ1 ; e
ðkÞ
2 ; . . .; e

ðkÞ
p Þ, go to step 5.

Otherwise, let k / k ? 1 and go to step 3.

5. Replacement rule: The endmember which is absent in

the largest volume among the p simplexes,

Sðr; eðkÞ2 ; . . .; e
ðkÞ
p Þ; SðeðkÞ1 ; r; e

ðkÞ
3 ; . . .; e

ðkÞ
p Þ; . . .SðeðkÞ1 ; e

ðkÞ
2

; . . .; e
ðkÞ
p�1; rÞ; will be replaced by the sample vector r.

Assume that such an endmember is denoted by e
ðkþ1Þ
j :A

new set of endmembers is then produced by letting

e
ðkþ1Þ
j ¼ r and e

ðkþ1Þ
i ¼ e

ðkÞ
i for i = j and go to step 4

with the next data sample.

Figure 2 describes a block diagram of how the IN-FINDR

can be broken up into two iterative procedures, an inner loop,

and an outer loop via two counters, j and k.

It should be noted that the above IN-FINDR is gen-

erally not optimal as is SM N-FINDR. However, it can be

considered as nearly optimal. The similarity between SM

N-FINDR and IN-FINDR can be illustrated by the simi-

larity between finding multiple integral and iterated inte-

grals where the region to be integrated is generally a

multi-dimensional space compared to the regions to be

calculated by iterated integrals which are usually one-

dimensional space. Using this context as interpretation,

the exhaustive search implemented in SM N-FINDR is

similar to finding a multiple integral which integrates a

multi-dimensional region in the original data space,

whereas the inner and outer loops carried out in

IN-FINDR iteratively is similar to finding iterated inte-

grals over one-dimensional space. In most cases, the

results obtained by iterated integrals are the same as that

obtained by directly finding multiple integrals according

to Fubini’s Theorem [10].

3 Various versions of real-time N-FINDR

The IN-FINDR presented in the previous section provides a

key to real time processing of the SM N-FINDR by con-

verting a simultaneous search for p endmembers to a

sequential search for p endmembers. Nevertheless, there

Fig. 1 Block diagram of N-FINDR implementation
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are two more issues needed to be addressed, step 1(b)

which requires dimensionality reduction, and step 2 which

uses randomly generated vectors as initial endmembers.

While the number of endmembers, p must be known

a priori in step 1(a), we can actually re-design the

N-FINDR from a real-time processing view point by

eliminating step 1(b) and step 2 all together in such a way

that the dimensionality reduction required in step 1(b) is no

longer needed and the p random initial vectors in step 2 are

replaced with the first p data sample vectors inputted from

the data set. The whole issue in real-time processing comes

down to the inner and outer loop implemented in the

IN-FINDR which converts the IN-FINDR to a sequential

version of N-FINDR in steps 3–5. More specifically, steps

4–5 implemented in the IN-FINDR are replaced by a

sequential search to update new endmembers in real time

as new data samples come in. To accomplish this goal,

three real-time processing versions of implementing the

inner loop of the IN-FINDR are presented in the following

subsections.

3.1 Real-time SeQuential N-FINDR

(RT SQ N-FINDR)

According to the inner loop of the IN-FINDR, the

replacement rule described in step 5 was executed by cal-

culating the volume of a p-vertex simplex p times. This

section presents an interesting alternative process, called

Real Time SeQuential N-FINDR (RT SQ N-FINDR) to

implement the inner loop of the IN-FINDR in real time

which can be described as follows.

3.1.1 RT SQ N-FINDR

1. Initial condition: Assume that frigN
i¼1 are data sample

vectors inputted according to 1, 2,…,N. Input the first p

data sample vectors as the initial set of initial vectors,

feð0Þ1 ; e
ð0Þ
2 ; . . .; e

ð0Þ
p g; i.e., e

ð0Þ
i ¼ ri for 1 B i B p. Set

k = 0.

2. Let k / k ? 1, i.e., kth data sample vector and

calculate the volumes of the simplexes Sðrk; e
ðkÞ
2 ; . . .;

e
ðkÞ
p Þ:SðeðkÞ1 ; rk; e

ðkÞ
3 ; . . .; e

ðkÞ
p Þ; . . .; SðeðkÞ1 ; . . .; e

ðkÞ
p�1; rkÞ

and find the index jk that yields the maximum volume

among all p endmembers, e
ðkÞ
1 ; e

ðkÞ
2 ; . . .; e

ðkÞ
p the rk

replaces, i.e.,

jk ¼ arg max
1� j�p

V e
ðkÞ
1 ; . . .;e

ðkÞ
j�1; rk|{z}

j

;e
ðkÞ
jþ1; . . .;e

ðkÞ
p

0
@

1
A

8<
:

9=
;:
ð3Þ

3. Check if

V e
ðkÞ
1 ; e

ðkÞ
2 ; e

ðkÞ
3 ; . . .; eðkÞp

	 


[ V e
ðkÞ
1 ; . . .; rk|{z}

jk

; . . .; eðkÞp

0
@

1
A: ð4Þ

4. If (4) is true, go to step 5. Otherwise, let

e
ðkÞ
jk
 rk: ð5Þ

and continue.

5. Check if k = N. If yes, the algorithm is terminated.

Otherwise, let e
ðkþ1Þ
i ¼ e

ðkÞ
i for 1� i� p and go to step 2.

Fig. 2 Block diagram of

IN-FINDR implementation
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Figure 3 shows a block diagram to implement the RT

SQ N-FINDR where the counter k is used to track how

many endmembers, i.e., how many passes have been

processed.

Two following comments are noteworthy.

1. Interestingly, if we replace the inner loop of the

IN-FINDR by the RT SQ N-FINDR and each run of

the RT SQ N-FINDR is considered one pass, the

IN-FINDR can be implemented in real time as an RT

multiple-pass SQ N-FINDR where the number of

passes to complete the IN-FINDR is determined by the

index k used in its outer loop. Accordingly, the RT

multiple-pass SQ N-FINDR can be considered as real-

time processing of IN-FINDR, RT IN-FINDR.

2. It is important to realize that (3) can be implemented

without dimensionality reduction. First, the volume is

calculated by a determinant not a matrix inverse.

Second, the determinant is actually a product of all

nonzero eigenvlaues of a matrix in (1) which has only

p - 1 nonzero eigenvalues. In this case, we only need

to calculate the characteristic polynomial equation to

find all nonzero eigenvalues without performing

dimensionality reduction.

3.2 Real-time circular N-FINDR

In the above RT SQ N-FINDR, it requires computation of

the volume of a p-vertex simplex p times for each data

sample rk after the first p samples, i.e., k [ p. To further

reduce computational complexity, it is highly desirable to

calculate one simplex volume for each data sample vector

in a circular manner of finding one optimal endmember at a

time while the other endmembers remaining fixed. As a

result of such a circular process, a significant reduction in

computational complexity can be achieved. This section

proposes an alternative algorithm to the RT SQ N-FINDR,

to be called real-time circular N-FINDR (RT Circular

N-FINDR) whose idea can be illustrated as follows.

Assume that frigN
i¼1 are data sample vectors. We first

use the 1st p pixel vectors r1; r2; . . .; rp as p initial end-

members, feð0Þ1 ; e
ð0Þ
2 ; . . .; e

ð0Þ
p g; then we begin to process

whether or not the first initial endmember e
ð0Þ
1 needs to be

replaced according to the criterion as a new data sample

vector rp?1 is processed. The new updated first endmember

is then denoted by e
ð1Þ
1 with superscript indicating the first

iteration. After the (p ? 1)st is processed, we input the

next new data sample vector rp?2 to process if the second

initial endmember e
ð0Þ
2 needs to be replaced where the new

updated second endmember is denoted by e
ð1Þ
2 : The process

is continued on until it reaches the 2pth data sample vector

used to update the pth initial endmember e
ð0Þ
p with the new

updated pth endmember e
ð1Þ
p : After this stage, all the p

initial endmembers have been updated a new set of p

endmembers feð1Þ1 ; e
ð1Þ
2 ; . . .; e

ð1Þ
p g have been updated in

which case the entire process is completed as a cycle. By

the time the (2p ? 1) data sample vector comes in, a

second cycle is begun to update feð1Þ1 ; e
ð1Þ
2 ; . . .; e

ð1Þ
p g: The

same p-cycle process is repeated over and over again until

it reaches the last data sample vector rN. For an illustrative

purpose, Fig. 1 details the circular iterative procedure

carried out by the RT Circular N-FINDR where only

Fig. 3 Block diagram of RT

SQ N-FINDR implementation
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indexes of data sample vectors are used for simplicity and j

is defined as j � ĵ ðmodpÞ if j ¼ kpþ ĵ with 1� ĵ� p:

Using the concept of the iterative circular procedure

described in Fig. 4, a detailed implementation of the RT

Circular N-FINDR is given below.

3.2.1 Real-time circular N-FINDR

1. Initial condition: Assume that frigN
i¼1 are data sample

vectors inputted according to 1, 2,…,N. Input the first p

pixel vectors r1; r2; . . .; rp as p initial endmembers,

feð0Þ1 ; e
ð0Þ
2 ; . . .; e

ð0Þ
p g by setting ri ¼ e

ð0Þ
i : Set k = 0 and

j ¼ 1 � ĵ ðmodpÞ:
2. Let ðkpþ ĵÞth pixel vector in the image cube data be

denoted by rkpþĵ calculate VðeðkÞ1 ; . . .; e
ðkÞ
ĵ�1
; rkpþĵ;

e
ðkÞ
ĵþ1
; . . .; e

ðkÞ
p Þ;, the volume of SðeðkÞ1 ; . . .; e

ðkÞ
j�1;

rkpþĵ; e
ðkÞ
jþ1; . . .; e

ðkÞ
p Þ; and check if

V e
ðkÞ
1 ; . . .; e

ðkÞ
ĵ�1
; rkpþĵ; e

ðkÞ
ĵþ1
; . . .; eðkÞp

	 

�V e

ðkÞ
1 ; . . .; e

ðkÞ
ĵ�1
; e
ðkÞ
ĵ
; e
ðkÞ
ĵþ1
; . . .; eðkÞp

	 

If it is, go to step 4. Otherwise, continue.

3. Replacement rule: The endmember pixel e
ðkÞ
ĵ

will be

replaced by the sample vector rkpþĵ and will be

re-labeled by e
ðkþ1Þ
ĵ

: A new set of endmembers is then

produced by letting e
ðkþ1Þ
ĵ

¼ rkpþĵ and e
ðkþ1Þ
i ¼ e

ðkÞ
i for

i 6¼ ĵ: Go to step 4.

4. If the next pixel vector ri?1, riþ1 6¼ rN ; let k / k ? 1

and j / j ? 1. Find j � ĵ ðmod pÞ and go to step 2.

Otherwise, the algorithm is terminated.

Two reasons for the RT Circular N-FINDR to be

implemented in such a circular order are (1) to make sure

that all endmembers have equal opportunity to be replaced

if necessary and (2) to reduce computational complexity to

calculate a p-vertex simplex volume only once at a time

instead of p-vertex simplexes p times at a time.

According to the above implementation, the initial end-

members used by the RT Circular N-FINDR have tremen-

dous impact on final selected endmembers. This issue can

be addressed by an algorithm similar to multiple-pass SQ

N-FINDR, to be called multiple-pass RT circular N-FINDR

which re-runs the RT Circular N-FINDR as a second round

process using the final p endmembers found in its first round

process as a new set of initial endmembers. The final set of p

endmembers found by a second run of the RT Circular

N-FINDR should result in a better set of p endmembers than

those p endmembers found by its first round. Similarly, the

same process can be repeated over and over again for the

third round RT Circular N-FINDR using the second round

found p endmembers as a new initial set of p endmembers,

the fourth round RT Circular N-FINDR using the third

round found p endmembers as a new initial set of p end-

members, and so on. Another advantage of using multiple

passes is to add a global shift at mth run which makes rkpþĵ

to replace e
ðkÞ
ðĵþmÞmodp

instead of e
ðkÞ
ĵ
: It prevents each data

sample from being replaced by a pixel at the same location

in different passes. The idea of using passes to describe how

many times required to re-run the same algorithm is exactly

the same as multiple-pass RT SQ N-FINDR which uses the

counter index in the outer loop by the RT IN-FINDR. The

number of passes the RT Circular N-FINDR should be run

is determined by the final sets of endmembers found by two

consecutive runs are identical. Accordingly, the RT multi-

ple-pass circular N-FINDR resolves the issue of depen-

dency on initial conditions by including an outer loop to

re-run the RT Circular N-FINDR as the RT multiple-pass

SQ N-FINDR does for the RT IN-FINDR in the sense that

the RT SQ N-FINDR only executes the inner loop of the RT

IN-FINDR. The difference between the RT multiple-pass

circular N-FINDR and the RT multiple-pass SQ N-FINDR

is their replacement rules described in step 3. The latter

replaces the endmember which yields the smallest simplex

volume among all the existing p endmembers as a new data

sample vector comes in as opposed to the former which only

replaces one endmember at a time in a circular order which

starts from j = 1 to j = p and then circulates back to j = 1

to j = p over and over again when new data sample vectors

are fed in. Compared to the RT Circular N-FINDR, the RT

SQ N-FINDR requires an additional register to record the

endmember to be replaced during the data processing, while

the RT Circular N-FINDR does not. Interestingly, the RT

multiple-pass circular N-FINDR can be also implemented

as the RT IN-FINDR with the RT SQ N-FINDR replaced by

the RT Circular N-FINDR in which case the RT multiple-

pass circular N-FINDR can be also viewed as another

version of the RT IN-FINDR.
Fig. 4 Iterative circular procedure carried out by RT Circular

N-FINDR
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Finally, we would like to conclude with the following

two remarks.

(a) Since the RT Circular N-FINDR calculate one

simplex volume for an endmember at a time com-

pared to the RT SQ N-FINDR which calculates p

simplex volume for an endmember, the number of

passes required for RT multiple-pass circular

N-FINDR is generally greater than that required for

RT multiple-pass SQ N-FINDR. According to our

extensive experiments on various data sets, the RT

multiple-pass Circular N-FINDR always completes its

process before p passes and never goes beyond p

passes. However, on some occasions, there are

multiple pixels whose spectral signatures are very

close and can be used to specify the same endmem-

bers. Under such circumstance, these different pixels

may be extracted by the RT Circular N-FINDR at

different runs and may cause the RT multiple-pass

circular N-FINDR not to converge after p passes.

Additionally, due to the global shift implemented in

each pass, we can always terminate the RT multiple-

pass circular N-FINDR after it completes p passes and

the result obtained at the pth pass will be used as the

final results. This same criterion is also applied to the

RT multiple-pass SQ N-FINDR even though such a

rare case may never occur to the RT SQ N-FINDR

because the RT SQ N-FINDR always searches for p

optimal endmembers instead of one optimal end-

member at a time by the RT Circular N-FINDR.

(b) The RT multiple-pass circular N-FINDR and the RT

multiple-pass SQ N-FINDR may not be considered as

real-time processing algorithms since each new pass

creates an extra time lag. However, if such a time lag

is negligible, both can be considered as near real-time

processing algorithms. Additionally, both algorithms

may not be able to produce outputs in real time if too

many passes are required. Nevertheless, they are still

considered as a causal processing because their

executing processes require no future data sample

vectors to update endmembers.

3.3 Real time SuCcessive N-FINDR

(RT SC N-FINDR)

When the RT IN-FINDR (i.e., RT multiple-pass SQ

N-FINDR) and RT multiple-pass circular N-FINDR

described in the previous section are performed, there is no

knowledge about how many passes will be required before

the algorithms are terminated. This section presents a

new algorithm, to be called teal time p-Pass SuCcessive

N-FINDR (RT p-Pass SC N-FINDR) by combining the

concepts of the RT SQ N-FINDR and multiple-pass RT

circular N-FINDR to perform what the RT multiple-pass

SQ N-FINDR does for the RT IN-FINDR except that we

know exactly how many passes the algorithm should run,

which is the number of endmembers, p. The details of RT

p-Pass SC N-FINDR is provided in the following

algorithm.

3.3.1 p-Pass RT SC N-FINDR

1. Initial condition: Set j = 1 and input the first p pixel

vectors r1; r2; . . .; rp as p initial endmembers,

feð0Þ1 ; e
ð0Þ
2 ; . . .; e

ð0Þ
p g:

2. At the jth pass, we are supposed to find the jth

endmember ej and the endmembers e
ð�Þ
1 ; e

ð�Þ
2 ; . . .; e

ð�Þ
j�1

prior to the jth endmember ej are assumed to be

known. frigN
i¼1 are data sample vectors inputted

according to 1, 2,…,N. Let k = 1.

3. For rk 62 feð�Þ1 ; e
ð�Þ
2 ; . . .; e

ð�Þ
j�1g calculate the volume of

the simplex, Sðeð�Þ1 ; e
ð�Þ
2 ; . . .; e

ð�Þ
j�1; rk; ejþ1; . . .; epÞ and

set max volumeðjÞ ¼ Vðeð�Þ1 ; e
ð�Þ
2 ; . . .; e

ð�Þ
j�1; rk; ejþ1

; . . .; epÞ. Then calculate Vðeð�Þ1 ; e
ð�Þ
2 ; . . .; e

ð�Þ
j�1; rkþ1;

ejþ1; . . .; epÞ and compare it to max volumeðjÞ.
If Vðeð�Þ1 ; e

ð�Þ
2 ; . . .; e

ð�Þ
j�1; rkþ1; ejþ1; . . .; epÞ[ max

volumeðjÞ; then max volumeðjÞ  Vðeð�Þ1 ; e
ð�Þ
2 ; . . .;

e
ð�Þ
j�1; rkþ1; ejþ1; . . .; epÞ and check if

rkþ1 ¼ rN : ð6Þ

4. If (6) is not true, let k / k ? 1 and go to step 3.

Otherwise, continue.

5. In this case, the jth endmember e
ð�Þ
j is found and

continue to find the next (j ? 1) endmembrer, e
ð�Þ
jþ1: If

j = p, the algorithm is terminated. Otherwise, let j /
j ? 1 and go to step 2.

Figure 5 provides a block diagram of the RT SC N-FINDR

implementation which describes the above procedure in a

simple manner where the counter j keeps track of how

many endmembers, i.e., how many passes, have been

processed.

It should be noted that the above RT p-Pass SC N-

FINDR is also implemented by two loops, outer loop

specified by j to keep tracks of how many passes the algo-

rithm has been executed and inner loop specified by k which

updates endmembers to find the jth endmember, e�j for a

specific j. But these two inner and outer loops are different

from the inner and outer loops implemented by the RT

IN-FINDR. More specifically, the RT IN-FINDR uses the

outer loop to eliminate the dependency of the algorithm on

the specific initial condition, while the inner loops is to find

all the p endmembers for a given initial condition. By

contrast, the RT SC N-FINDR uses the outer loop to specify
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a particular endmember needed to be generated by starting

an initial endmember and then uses the inner loop to keep

updating the initial endmember by using incoming data

sample vectors to find this particular endmember. There-

fore, the RT SC N-FINDR performs more like the RT

1-pass SQ N-FINDR which is a special case of the

IN-FINDR that runs the RT SQ N-FINDR only one time.

It is also interesting to note that when the RT multiple-

pass SQ N-FINDR and RT multiple-pass circular

N-FINDR are implemented as p passes, they become RT

p-Pass SQ N-FINDR and RT p-Pass Circular N-FINDR.

However, we should note that if the RT multiple-pass SQ

N-FINDR and RT multiple-pass circular N-FINDR

implemented as the RT IN-FINDR, both require variable

numbers of passes to complete its search for p endmembers

which are generally fewer than p passes.

Finally, assume that cj is the cost of calculating the

volume of a j-vertex simplex. Table 1 tabulates the com-

putational complexity based on number of times to calcu-

late various simplexes required by the N-FINDR, RT

IN-FINDR, RT SQ N-FINDR, RT p-pass Circular

N-FINDR, RT p-pass SC N-FINDR where the K is the total

number of times for the outer loop to be executed in the

IN-FINDR.

By concluding this section, it should be noted that all

the RT versions of N-FINDR presented in this section,

RT IN-FINDR (RT multiple-pass SQ N-FINDR or RT

multiple-pass circular N-FINDR), RT SQ N-FINDR, RT

Circular N-FINDR, RT Circular N-FINDR and RT p-Pass

SC N-FINDR, do not require dimensionality reduction as

does the SM N-FINDR. This advantage allows algorithms

to be applicable to feasibility of real time processing. In

addition, the use of the first p endmembers as initial end-

members can be considered as a special case of so-called

endmember initialization algorithm (EIA) [5]. In a causal

processing, we do not have such a luxury to use a custom-

designed EIA. The only option that we have is to use the

first p endmembers as the initial endmembers. However, on

the other hand, since an EIA-based N-FINDR can be

considered as a special case of SQ N-FINDR due to the fact

that the EIA-based N-FINDR uses a particular set of initial

endmembers generated by an EIA, it is a suboptimal ver-

sion of the IN-FINDR which iteratively runs the SQ

N-FINDR as a multiple-pass SQ N-FINDR by improving

its initial endmembers in each run of SQ N-FINDR. In this

case, it is not included in our comparative analysis.

4 Synthetic image experiments

In this section, synthetic images were simulated by the

Cuprite image data shown in Fig. 6a which is available at

the USGS website [11]. The scene is a 224-band image

with size of 350 9 350 pixels and was collected over the

Cuprite mining site, Nevada, in 1997. It is well understood

mineralogically. As a result, a total of 189 bands were used

for experiments where bands 1–3, 105–115 and 150–170

have been removed prior to the analysis due to water

absorption and low SNR in those bands. Although there are

more than five minerals on the data set, the ground truth

available for this region only provides the locations of the

pure pixels: Alunite (A), Buddingtonite (B), Calcite (C),

Kaolinite (K) and Muscovite (M). The locations of these

five pure minerals are labeled by A, B, C, K, and M,

respectively, and shown in Fig. 6b. Available from the

image scene is a set of spectra, reflectance spectra shown in

Fig. 6c which will be used to simulate synthetic images.

The sample mean of the entire image shown in Fig. 6a was

used to simulate the background for image scene in Fig. 7

also plotted in Fig. 6c.

The synthetic image to be simulated for experiments has

size of 200 9 200 pixel vectors with 25 panels of various

sizes which are arranged in a 5 9 5 matrix and located at

the center of the scene shown in Fig. 7. The 25 panels in

Fig. 5 Block diagram of RT SC N-FINDR implementation

Table 1 Computational complexity of various versions of N-FINDR

N-FINDR RT IN-FINDR RT SQ N-FINDR RT p-pass Circular N-FINDR RT p-pass SC N-FINDR

N!
ðN�pÞ!p! � cp cp�p�(N - p)�K cp�p�(N - p) cp�p�(N - p) cp�p�(N - p)
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Fig. 7 were simulated to be used for the six scenarios

described below. The five mineral spectral signatures,

fmig5
i¼1 in Fig. 6c are used to simulate these 25 panels

where each row of five panels was simulated by the same

mineral signature and each column of 5 panels has the

same size. Among 25 panels are five 4 9 4 pure-pixel

panels, pi
4�4 for i = 1,…,5 lined up in five rows in the first

column and five 2 9 2 pure-pixel panels, pi
2�2 for

i = 1,…,5 lined up in five rows in the second column for

pure pixel classification; the five 2 9 2-mixed pixel panels,

fpi
3;jkg

2;2
j¼1;k¼1 for i = 1,…,5 lined up in five rows in the

third column for mixed pixel classification and both the

five subpixel panels, pi
4;1 for i = 1,…,5 lined up in five

rows in the fourth column and the five sub-pixel panels,

pi
5;1 for i = 1,…,5 lined up in five rows in the fifth column

for subpixel classification. The purpose of introducing the

five panels in the third column and subpixel panels in the

fourth and fifth columns was designed to conduct a study

and analysis on five mineral signatures with different

mixing in a pixel and five mineral signatures embedded in

single pixels at subpixel scale.

Tables 2 and 3 tabulate the mixing details of mineral

composition in the 20 mixed pixels in the third column in

Fig. 7 and the 5 subpixel panels with 50% abundance of

mineral signatures in the fourth column and the 5 subpixel

panels with 25% abundance of mineral signatures in the

fifth columns in Fig. 7, respectively.

Therefore, in Fig. 7 there are a total of 130 panel pixels

present in the scene, 80 pure panel pixels in the first col-

umn, 20 pure panel pixels in the second column, 20 mixed

panel pixels in the third column, five 50%-abundance

subtarget panel pixels in the fourth column and five 25%-

abundance subpixel target panel pixels in the fifth column.

Once targets are simulated as above, we further use the

sample mean of the image scene in Fig. 6a as a background

signature to simulate a zero mean Gaussian noise-corrupted

image background. It should be noted that since all

(a) (b)
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Fig. 6 a Cuprite AVIRIS image scene, b spatial positions of five pure

pixels corresponding to minerals: alunite (A), buddingtonite (B),

calcite (C), kaolinite (K) and muscovite (M); c Five mineral

reflectance spectra and background signature (b)—which is the

sample mean of the image in (a)

Fig. 7 25 simulated panels according to Tables 2 and 3

Table 2 Mixed panel pixels in the third column for simulations

Row 1 p1
3;11 ¼ 0:5Aþ 0:5B p1

3;12 ¼ 0:5Aþ 0:5C

p1
3;21 ¼ 0:5Aþ 0:5K p1

3;22 ¼ 0:5Aþ 0:5M

Row 2 p2
3;11 ¼ 0:5Aþ 0:5B p2

3;12 ¼ 0:5Bþ 0:5C

p2
3;21 ¼ 0:5Bþ 0:5K p2

3;22 ¼ 0:5Bþ 0:5M

Row 3 p3
3;11 ¼ 0:5Aþ 0:5C p3

3;12 ¼ 0:5Bþ 0:5C

p3
3;21 ¼ 0:5C þ 0:5K p3

3;22 ¼ 0:5C þ 0:5M

Row 4 p4
3;11 ¼ 0:5Aþ 0:5K p4

3;12 ¼ 0:5Bþ 0:5K

p4
3;21 ¼ 0:5C þ 0:5K p4

3;22 ¼ 0:5K þ 0:5M

Row 5 p5
3;11 ¼ 0:5Aþ 0:5M p5

3;12 ¼ 0:5Bþ 0:5M

p5
3;21 ¼ 0:5C þ 0:5M p5

3;22 ¼ 0:5K þ 0:5M

Table 3 Subpixels in the 4th and 5th columns for simulations

50% Subpixel panels

in fourth column

25% Subpixel panels

in fifth column

Row 1 p1
4;1 ¼ 0:5Aþ 0:5b p1

5;1 ¼ 0:25Aþ 0:75b

Row 2 p2
4;1 ¼ 0:5Bþ 0:5b p2

5;1 ¼ 0:25Bþ 0:75b

Row 3 p3
4;1 ¼ 0:5C þ 0:5b p3

5;1 ¼ 0:25C þ 0:75b

Row 4 p4
4;1 ¼ 0:5K þ 0:5b p4

5;1 ¼ 0:25K þ 0:75b

Row 5 p5
4;1 ¼ 0:5M þ 0:5b p5

5;1 ¼ 0:25M þ 0:75b
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different spectral band images have various signal energies,

in order for each spectral band image to achieve the same

level of signal-to-noise ratio (SNR) defined as 50% sig-

nature (i.e., reflectance/radiance) divided by the standard

deviation of the noise in [12], zero-mean Gaussian noises

with different variances were used and added to different

spectral band images for this purpose. Once target pixels

and background are simulated, two types of target inser-

tion, referred to as target implantation (TI) and target

embeddedness (TE), can be designed to simulate experi-

ments for various applications.

4.1 Target implantation (TI)

The first type of target insertion is referred to as target

implantation (TI) which inserts the above 130 panel pixels

into the image by replacing their corresponding back-

ground pixels. Therefore, the resulting synthetic image has

clean panel pixels implanted in a noisy background with an

additive Gaussian noise of SNR = 20:1 for this scenario as

shown in Fig. 8a.

According to the ground truth, there have five pure

distinct mineral signatures, A, B, C, K, and M used to

simulate pure panel pixels in the first and second columns

and one mixed background signature. Therefore, techni-

cally speaking, there are only five endmembers present in

TI. But those pixels in the first two columns simulated by

pure signatures can be considered as endmember pixels. In

this case, there are a total of 100 endmember pixels with 80

endmember pixels in the first column and 20 endmember

pixels in the second column. Since no prior knowledge

about the scenario TI is provided, a new concept, Virtual

Dimensionality (VD) in [7, 8] was used to estimate the

number of endmembers that were present in the data where

a noise-whitened HFC (NWHFC) method developed by

Harsanyi et al. [13] was used for VD estimation for the

simulated images. The VD estimated for TI was 5 as long

as the false alarm probability PF� 10�1: Since the real time

processing N-FINDR algorithms are a sequential process,

we used p = 5 as the number of endmembers required for

N-FINDR to generate. Since the RT IN-FINDR imple-

mented the RT SQ N-FINDR repeatedly, Fig. 9 shows the

results of RT IN-FINDR where Fig. 9a–d dictates a pro-

gressive process of the first pass implemented by the RT

SQ N-FINDR and Fig. 9e–f are results after the RT SQ

N-FINDR completed 2 passes and 3 passes, respectively.

The RT IN-FINDR was terminated when the results after 2

passes and 3 passes were identical in which case no more

pass was required for the SQ N-FINDR to re-run again. As

noted in the real-time progressive endmember extraction

presented in Fig. 9a–c, the extracted endmembers kept

changing until the first pass was completed in Fig. 9d

where the first four extracted pixels were indeed end-

member pixels. Now, the RT SQ N-FINDR was re-run

again to determine whether or not the SQ N-FINDR must

be terminated. Figure 9e shows the results after it com-

pleted two passes where one of third panel pixels was

extracted as the fifth pixel which corresponded to the last

pure material signature missed in the first pass. The RT SQ

N-FINDR requires a re-run for a third pass where the same

five endmember pixels were extracted. In this case, the RT

IN-FINDR would have been terminated. In order to see the

performance of the RT 5-pass Circular N-FINDR and RT

5-pass SC N-FINDR, Figs. 10, 11 show their 5-pass results,

respectively, where both algorithms also extracted the five

panel pixels as endmembers that specified five pure mineral

signatures. It should be noted that the RT 5-pass Circular

N-FINDR was implemented in this experiment to see how

many passes would be required for implementing the RT

multiple-pass circular N-FINDR before five passes. How-

ever, there is an interesting finding in Figs. 10, 11 where

both actually generated all the desired five endmembers

with only three passes for RT 5-pass Circular N-FINDR

and five passes for RT 6-pass SC N-FINDR. Therefore, if

the IN-FINDR was implemented as RT Multiple Circular

N-FINDR, it could have been completed after four passes.

Accordingly, in terms of the minimum number of passes

required to extract the five endmembers, the RT Multiple

Circular N-FINDR turned out to be the best with only three

passes followed by the RT Multiple Circular N-FINDR

implemented as an alternative IN-FINDR (4 passes) and

RT 5-pass SC N-FINDR (5 passes).

If we further document computational cost required for

each of the five algorithms, RT IN-FINDR implemented as

multiple-pass SQ N-FINDR, RT IN-FINDR implemented

as multiple-pass circular N-FINDR, RT SQ N-FINDR, RT

5-pass Circular N-FINDR and RT 5-pass SC N-FINDR,

Table 4 tabulates their computing times in seconds which

show that the best one was the RT Multiple Circular

N-FINDR followed by the RT 5-pass SC N-FINDR which

was very close to the RT 5-pass Circular N-FINDR. It

should be noted that the computing time required for the

SQ N-FINDR is nearly the same as that required by the RTFig. 8 Two scenarios for target insertion, TI and TE
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5-pass SC N-FINDR due to the fact that the latter needs to

implement 5 passes to accomplish what the 1-pass SQ

N-FINDR does. For further comparison we also include

results of running two non-real time sequential endmember

extraction algorithms, simplex growing algorithm (SGA)

[9] and vertex component analysis (VCA) [14] where VCA

shows the best time since it only performs orthogonal

projection which requires much less time than computing

simplex volumes. In order to make fair comparison the

SGA and VCA were also performed without dimension-

ality reduction. However, it should be noted that the VCA

is not part of a family of the simplex-based algorithms and

it also cannot be implemented as a real-time processing

algorithm. Its results are simply included for reference.

Interestingly, the results also show that except the

IN-FINDR all other RT N-FINDR algorithms require less

time than the SGA which computes volumes of a growing

number of simplexes. This may be due to the fact that the

SGA must find a set of growing simplexes with maximum

volumes as the p grows compared to our proposed

sequential RT N-FINDR algorithms which find a p-vertex

simplex with maximum volume for a fixed p by replacing

one vertex at a time while other p - 1 vertices are fixed

unchanged.

4.2 Target embeddedness (TE)

In analogy with scenario TI, another type of target insertion

is referred to as target embeddedness (TE) is simulated

except the way how the panel pixels were inserted. The

background pixels were not removed to accommodate the

inserted panel pixels as they were done in TI, but were

rather superimposed with the inserted panel pixels.

Therefore, in this case, the resulting synthetic image shown

in Fig. 8b has clean panel pixels embedded in a noisy

background. In this case, there were no pure signatures

present in the TE because the panel pixels were superim-

posed on the background pixels. Therefore, technically

Fig. 9 Progress of five endmembers extracted by RT IN-FINDR on scenario TI: first pass of RT SQ N-FINDR (a–d); results of passes increased

by one, e after 2 passes (f) after 3 passes

Fig. 10 Results of each pass of RT 5-Pass Circular N-FINDR

Fig. 11 Results of each pass of RT 5-Pass SC N-FINDR
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speaking the number of endmembers should be zero.

Nevertheless, theoretically speaking there are still five

endmembers to be used plus the background signature to

compose all data sample vectors to make up the data set.

Under such circumstance, there are no endmember pixels.

Therefore, what we would want to have is to extract pixels

which are most likely pure pixels even they are not. This

scenario commonly occurs in real world applications where

there may not have any pure signatures in the data in which

case the best we can do is to find most pure signatures

resident in the data. The VD estimated by the noise-whit-

ened HFC method for TE was also five with the false alarm

probability PF� 10�1: In order to compare the results

obtained for the scenario TI, the same experiments con-

ducted for scenario TI were also performed for scenario

TE. Figure 12 shows the results of RT IN-FINDR where

Figure 12a–d dictate a real-time progressive process of

the first pass implemented by the RT SQ N-FINDR and

Figure 12e–f are results after the RT SQ N-FINDR com-

pleted two passes and three passes, respectively. The RT

IN- FINDR was terminated when the results after two

passes and three passes were identical in which case no

more pass was required for the SQ N-FINDR to re-run

again. Comparing the results in Figs. 12, 13, 14 to that in

Figs. 9, 10, 11 all the four RT processing N-FINDR

algorithms, RT IN-FINDR, RT SQ N-FINDR, RT 5-pass

Circular N-FINDR and RT 5-pass SC N-FINDR were able

to extract each panel pixel from five rows. The same

phenomenon was also observed where RT 5-pass Circular

N-FINDR extracted all the five endmembers at its second

pass, while the RT 5-pass SC N-FINDR accomplished its

task at the third pass. In other words, when the multiple-

pass circular N-FINDR was implemented as alternative

IN-FINDR, it would have completed its process after

three passes. It is the same as 3 passes required for the

IN-FINDR using the RT SQ N-FINDR.

Table 5 also tabulates computing times in seconds

required by RT IN-FINDR implemented as multiple-pass

SQ N-FINDR, RT IN-FINDR implemented as multiple-

pass circular N-FINDR, RT SQ N-FINDR, RT 5-pass

Circular N-FINDR and RT 5-pass SC N-FINDR along

with SGA and VCA where the same conclusion drawn

from Table 4 was also applied here and the best RT

N-FINDR algorithm was still the RT Multiple Circular

N-FINDR.

5 Real image experiments

In this section, two real data, HYperspectral Digital

Imagery Collection Experiment (HYDICE) and Airborne

Visible InfraRed Imaging Spectrometer (AVIRIS) Cuprite

data, were used to make a performance comparison among

various real time N-FINDR processing algorithms pro-

posed in this paper. All these algorithms were running on

the original image without any data dimensionality

reduction.

5.1 HYDICE data

The first image data to be studied is an image scene shown

in Fig. 15a, which has a size of 64 9 64 pixel vectors with

15 panels in the scene and the ground truth map in

Fig. 15b. It was acquired by 210 spectral bands with a

spectral coverage from 0.4 to 2.5 lm. Low signal/high

noise bands: bands 1–3 and bands 202–210; and water

Table 4 Computing times of RT multiple-pass SQ N-FINDR, RT

multiple-pass circular N-FINDR, RT 5-pass Circular N-FINDR and

RT 5-pass SC N-FINDR

Algorithms Computing time (s)

RT multiple-pass SQ N-FINDR

implemented as RT IN-FINDR

39.6454 (3 passes)

RT multiple-pass circular N-FINDR

implemented as RT IN-FINDR

10.9582 (4 passes)

RT SQ N-FINDR 13.2716

RT 6-Pass Circular N-FINDR 13.3979

RT 6-Pass SC N-FINDR 13.3614

SGA 20.43

VCA 2.42

Fig. 12 Progress of 5 endmembers extracted by RT IN-FINDR: 1st pass of RT SQ N-FINDR (a–d); results of passes increased by one, e after

two passes f after three passes
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vapor absorption bands: bands 101–112 and bands 137–

153 were removed. Therefore, a total of 169 bands were

used in experiments. The spatial resolution and spectral

resolution of this image scene are 1.56 m and 10 nm,

respectively.

Within the scene in Fig. 15a there is a large grass field

background, and a forest on the left edge. Each element in

this matrix is a square panel and denoted by pij with rows

indexed by i and columns indexed by j = 1, 2, 3. For each

row i = 1, 2,…,5, there are three panels painted by the

same paint but with three different sizes. The sizes of the

panels in the first, second and third columns are

3 m 9 3 m and 2 m 9 2 m and 1 m 9 1 m, respectively.

Since the size of the panels in the third column is

1 m 9 1 m, they cannot be seen visually from Fig. 15a due

to the fact that its size is less than the 1.56 m pixel reso-

lution. For each column j = 1, 2, 3, the 5 panels have the

same size but with five different paints. However, it should

be noted that the panels in rows 2 and 3 were made by the

same material with two different paints. Similarly, it is also

the case for panels in rows 4 and 5. Nevertheless, they were

still considered as different panels but our experiments will

demonstrate that detecting panels in row 3 (row 5) may

also have effect on detection of panels in row 2 (row 4).

The 1.56 m-spatial resolution of the image scene suggests

that most of the 15 panels are one pixel in size except that

the panels in the 1st column with the 2nd, 3rd, 4th, 5th

rows which are two-pixel panels, denoted by p211, p221,

p311, p312, p411, p412, p511, p521. Figure 15b shows the

precise spatial locations of these 15 panels where red pixels

(R pixels) are the panel center pixels and the pixels in

yellow (Y pixels) are panel pixels mixed with the back-

ground. For our experiments for this scene, VD was

Fig. 13 Results of each pass of RT 5-Pass Circular N-FINDR

Fig. 14 Results of each pass of RT 5-Pass SC N-FINDR

Fig. 15 a A HYDICE panel scene which contains 15 panels;

b Ground truth map of spatial locations of the 15 panels

Table 5 Computing times of RT multiple-pass SQ N-FINDR, RT

multiple-pass circular N-FINDR, RT 5-pass Circular N-FINDR and

RT 5-pass SC N-FINDR

Algorithms Computing time (s)

RT multiple-pass SQ N-FINDR

implemented as RT IN-FINDR

40.2761 (3 passes)

RT multiple-pass circular N-FINDR

implemented as RT IN-FINDR

7.9062 (3 passes)

RT SQ N-FINDR 13.3364

RT 6-Pass Circular N-FINDR 13.3841

RT 6-Pass SC N-FINDR 13.3838

SGA 20.28

VCA 2.54
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estimated to be 9 with the false alarm fixed at probabilities

PF = 10-3, 10-4.

First, we demonstrate the utility of the RT IN-FINDR

which implemented the SM N-FINDR in real time pro-

cessing. Since the RT IN-FINDR can be implemented as

the RT multiple-pass SQ N-FINDR, Fig. 16a–d illustrates a

progressive real time processing of one single pass (i.e., 1st

pass) executed by the RT SQ N-FINDR where three end-

members were already extracted at the end of the pass in

Fig. 16d. The nine endmembers found in the first pass were

then used as the initial endmembers of the second pass for

the RT SQ N-FINDR with final nine endmembers shown in

Fig. 16e. By comparing the nine endmembers obtained in

Figs. 16d and 12e, the only difference between them was

the seventh endmember extracted from the background.

Since both sets of nine endmembers were not identical, a

third pass is needed to run the RT SQ N-FINDR. The final

nine endmember extracted at the end of the fourth pass

were shown in Fig. 16g which were identical to the nine

endmember extracted in the third pass in which case the RT

IN-FINDR is terminated where the nine endmembers

extracted in the fourth pass were the final desired end-

members. It should be noted that according to reports in [9]

the best performance produced by the N-FINDR could only

extract three endmembers from the 15-panel HYDICE

scene in Fig. 15a rather than five endmembers as expected.

The reason for this is because the material made for the

panels in second and third rows was the same fabric and the

two panel signatures, p2 and p3 used to specify panel pixels

in these two rows were very similar and considered as the

same endmember. As a result, only one endmember in the

third row was extracted to represent these two panel sig-

natures. Similarly, an endmember in the fifth row was

extracted to represent the two panel signatures, p4 and p5

that were used to specify panel pixels in the fourth and fifth

rows. It has also been shown in [4–6, 9, 15–17] that in

order for the N-FINDR along with its variants to be able to

extract five panels was to use the independent component

analysis (ICA) to perform data dimensionality because the

main strength of the ICA lies in blind source separation. As

a consequence of using the ICA to perform dimensionality

reduction for the N-FINDR, the ICA works exactly what it

is designed to make the N-FINDR capable of finding five

endmembers to specify all the five panel signatures, p1, p2,

p3, p4 and p5. However, implementing a dimensionality

reduction as a pre-processing step such as ICA makes real

time processing impossible. Nevertheless, when data

dimensionality becomes necessary, the RT N-FINDR can

be always implemented after data dimensionality as a

follow-up real time endmember extraction processing

algorithm as shown in Fig. 16.

The above example shown in Fig. 16 sheds light on

how the inner and outer loops are executed by the RT

IN-FINDR. Most importantly, it also shows that the RT SQ

Fig. 16 Progress of nine endmembers extracted by RT IN-FINDR: first pass of RT SQ N-FINDR (a–d); Results of passes increased by one,

e after two passes (f) after three passes (g) after four passes
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N-FINDR which only implements the inner loop is suffi-

ciently enough to be used for endmember extraction

because it already extracted the three endmembers after

its first pass in Fig. 16a–d. This evidence further provides

the utility of 9-pass Circular N-FINDR and 9-pass SC

N-FINDR. Figures 17, 18 show the nine endmembers

extracted by the RT 9-pass Circular N-FINDR and RT

9-pass SC N-FINDR where the RT Circular N-FINDR

actually completed its process after seven passes. In other

words, if the RT IN-FINDR was implemented as RT

multiple-pass circular N-FINDR, it would have been ter-

minated after seven passes which were actually three more

passes than only four passes required by the IN-FINDR

implemented as the RT multiple-pass SQ N-FINDR. This

conclusion was consistent with that made for the scenarios

TI and TE. These experiments may suggest that the RT

Multiple SQ N-FINDR would actually perform better than

the RT multiple-pass circular N-FINDR in real applications

in terms of fewer passes. However, from a computational

point of view, the RT multiple-pass circular N-FINDR was

still the best even though it required more passes to com-

plete its process as shown in Table 6. These conclusions

also confirmed by the following Cuprite data experiments.

In order to compare computational efficiency, Table 6

documents the computing times of the five real time pro-

cessing N-FINDR algorithms, RT IN-FINDR implemented

as multiple-pass SQ N-FINDR, RT IN-FINDR imple-

mented as multiple-pass circular N-FINDR, RT SQ

N-FINDR, RT 9-pass Circular N-FINDR and RT 9-pass SC

N-FINDR along with SGA and VCA.

As shown in the table, the VCA had the best time since

it only performs orthogonal projections and did not com-

pute simplex volumes which require significant amount of

computing time. However, among all simplex volume

computed-based algorithms the RT 9-pass SC N-FINDR

yielded the best computing time and the RT multiple-pass

SQ N-FINDR was the slowest followed by the second

slowest, the non-real time SGA. Therefore, by taking into

account both the computational cost in Table 6 and the

results in Figs. 16, 17, 18 for real-time processing, the RT

9-pass multiple-pass circular N-FINDR was still the best

RT N-FNDR algorithm.

5.2 Cuprite data

The Cuprite shown in Fig. 6a was used to design synthetic

image experiments conducted in Sect. 4. This section we

perform experiments based on this real image scene. The

VD estimated for this scene was 22 based on the false alarm

fixed at probability PF = 10-4. Similar experiments done

for HYDICE experiments were also performed for this

Cuprite data. Figure 19a–c shows real-time processing of

progressive results of the RT IN-FINDR with completion of

first pass in Fig. 19d. Since the RT IN-FINDR can be

implemented as a multiple-pass RT SQ N-FINDR, the SQ

N-FINDR was re-run again using the final 22 endmembers

found in the 1st pass as its new initial endmembers and

result is shown in Fig. 19e. If two sets of the final 22 end-

members produced in the two consecutive passes do not

agree, the SQ N-FINDR is repeated over and over again to

extract another new set of 22 endmembers in the 3rd pass in

Fig. 19f, 4th pass in Fig. 19g until it completed 8 passes

where the two sets of 22 endmembers extracted in the 7th

and 8th passes were identical shown in Fig. 19j–k and the

algorithm was terminated. Since the pixels extracted by the

algorithm were generally not identical to ground truth

pixels, a spectral similarity measure such as spectral angle

mapper (SAM) was used for endmember identification. The

number within parentheses under each sub-figure after

Fig. 19d indicates the number of extracted materials. The

results show that the RT 1-pass SQ N-FINDR could suc-

cessfully extract five pixels identified as four mineral sig-

natures, in Fig. 19d, while the RT IN-FINDR implemented

as the RT multiple-pass SQ N-FINDR could only extracted

four mineral endmembers after 6 passes in Fig. 19i–k.

Figure 20 also shows the results of the RT 22-pass Circular

N-FINDR where all the five materials were extracted at

16th pass. This indicated that if the IN-FINDR implemented

as multiple-pass circular N-FINDR, it would have been

terminated after 17 passes. Similarly, Fig. 21 shows the

results produced by the 22-pass SC N-FINDR which found

the five materials after 14 passes.

As for computational cost, Table 7 tabulates computing

times in seconds for the five real time N-FINDR processing

algorithms, RT IN-FINDR implemented as multiple-pass

SQ N-FINDR, RT IN-FINDR implemented as multiple-

pass circular N-FINDR, RT 1-pass SQ N-FINDR, RT

22-pass Circular N-FINDR and RT 22-pass SC N-FINDR

along with the SGA and VCA where the multiple-pass

circular N-FINDR once again is the fastest algorithm

among all the simplex volume computed-based algorithms.

Table 6 Computing times of RT multiple-pass SQ N-FINDR, RT

multiple-pass circular N-FINDR, RT 9-pass Circular N-FINDR and

RT 9-pass SC N-FINDR

Computing time (s)

RT multiple-pass SQ N-FINDR

implemented as RT IN-FINDR

16.2234 (4 passes)

RT multiple-pass circular N-FINDR

implemented as RT IN-FINDR

3.1846 (7 passes)

RT SQ N-FINDR 4.0463

RT 9-pass Circular N-FINDR 4.1655

RT 9-pass SC N-FINDR 4.0060

SGA 5.04

VCA 0.5
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Because the VCA only used inner products to perform

orthogonal projection compared to the computation of

matrix determinants required by N-FINDR, it required least

computing time as expected. Nevertheless, its orthogonal

projection-based performance was not as good as the

simplex volume-computer based performance as shown in

[9]. Most importantly, the current version of the VCA

cannot be implemented in real time. In doing so, two major

issues need to be addressed. One is that the VCA uses a

random Gaussian variable to produce an initial endmember

to generate a new endmember and such a Gaussian process

cannot be implemented in real time. It seems that this issue

can be resolved by using the first incoming data sample

vector as its initial endmember as the way used in our RT

N-FINDR. The other is how to implement the VCA in real-

time processing as the number of endmembers increases.

This is an interesting problem for a further investigation.

In addition to the computational costs tabulated in

Table 7 the results in Figs. 19, 20, 21 are further used for

performance evaluation, the winner for the best RT

N-FINDR was the multiple-pass circular N-FINDR which

also performed the best for the HYDICE data experiments.

Fig. 17 Results of each pass of RT 9-Pass Circular N-FINDR

Fig. 18 Results of each pass of RT 9-Pass SC N-FINDR
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6 Real-time demonstration

This section presents real-time demonstration of the three

real-time N-FINDR processing algorithms, RT IN-FINDR,

implemented as multiple-pass SQ N-FINDR, RT 9-pass

Circular N-FINDR and RT 9-pass SC N-FINDR using the

HYDICE image scene in Fig. 15a as a test data. Since the

RT SC N-FINDR requires the least amount of computing

time according to Table 6, it was used as a benchmark

for compariosn. Figure 22a–c shows progressive processes

of RT multiple-pass SQ N-FINDR, RT 9-pass Circular

N-FINDR and RT 9-pass SC N-FINDR where each of 9

passes completed by the RT SC N-FINDR was used as a

baseline for comparison.

For example, in the first column in Fig. 21 shows

the first pass progressive processing by the RT Circular

N-FINDR and the RT SQ N-FINDR after the completion of

the first pass by the SC N-FINDR. From Table 4, the RT

multiple-pass SQ N-FINDR required approximate 16.22 s

to complete its process with 4 passes executed by the RT

SQ N-FINDR, each of 4 passes required about 4 s. This is

clearly shown in Fig. 21 where after the RT SC N-FINDR

completed its 9 passes, the RT 9-Pass Circular N-FINDR

was nearly done, while the RT IN-FINDR was just about to

complete its first pass.

7 Analysis of comparative performance

This section compares the relative performance in end-

member extraction among five endmember extraction

algorithms without real-time processing, IN-FINDR, SQ

N-FINDR, SC N-FINDR, SGA, VCA and five real time

processing versions of N-FINDR, RT multiple-pass SQ

N-FINDR, RT multiple-pass circular N-FINDR, RT Circular

N-FINDR and RT SC N-FINDR. Table 8 tallies end-

members extracted by individual algorithms where the

endmembers are tabulated in the order that endmembers

Fig. 19 Progress of 22 endmembers extracted by RT IN-FINDR: first pass of RT IN-FINDR (a–d); results of passes increased by one, e after 2

passes (f) after 3 passes (g) after 4 passes (h) after 5 passes (i) after 6 passes (j) after 7 passes (k) after 8 passes
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Fig. 20 Result of each pass of RT 22-Pass Circular N-FINDR
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Fig. 21 Result of each pass of RT 22-Pass SC N-FINDR
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were extracted in a sequential order except those extracted

by IN FINDR.

It should be noted that the results by RT multiple-pass

circular N-FINDR are not included in the table. This is

because the number of passes run by RT multiple-pass

circular N-FINDR is determined by VD. As a result, in

many cases it requires more passes than it should. For

example, in the TI scenario RT multiple-pass circular

N-FINDR required five passes to complete its process. As a

matter of fact, if it was implemented as IN-FINDR as

shown in the table, the five mineral signatures could have

been extracted in three passes, i.e., K, M, C (1st pass),

BKMA (2nd pass), C (3rd pass). This is also true for the TE

scenario, HYDICE and Cuprite data. Additionally, the

results by 1-pass SQ N-FINDR are not included since they

are already produced in the 1st pass by the Rt multiple-pass

SQ N-FINDR implemented as IN-FINDR. According to

Table 8 the real time processing N-FINDR algorithms

performed as well as their counterparts without real time

processing. Unlike the HYDICE experiments where the

extracted panel pixels were exactly the same as true end-

members, the Cuprite data has many pixels whose spectral

signatures are also specified by the five mineral signatures.

In this case, the pixels extracted in Fig. 22 may not be the

same pixels identified in Fig. 6(b). In this case, the SAM

and mean squared error (MSE) were used as criteria to

identify desired pixels that can be also used as endmember

pixels. For this purpose, Table 9 documents the SAM

values of endmembers extracted in Fig. 22 between their

true spectral signatures along with their corresponding

MSEs.

8 Conclusion

The N-FINDR has been widely used in endmember

extraction for hyperspectral imagery. Despite the fact that

the N-FINDR has shown great promise and potential in

Table 7 Computing times of RT multiple-pass SQ N-FINDR, RT

multiple-pass circular N-FINDR, RT Circular N-FINDR and RT SC

N-FINDR

Algorithms Computing time (s)

RT multiple-pass SQ N-FINDR implemented

as RT IN-FINDR

7,742.2 (8 passes)

RT multiple-pass circular N-FINDR

implemented as RT IN-FINDR

737.6612 (17 passes)

RT 1-pass SQ N-FINDR 956.5172

RT 22-Pass Circular N-FINDR 954.0581

RT22-Pass SC N-FINDR 933.0949

SGA 947.94

VCA 9.38
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Fig. 22 Progressive process of RT IN-FINDR/multiple-pass RT SC N-FINDR, RT 9-pass Circular N-FINDR and RT 9-pass SC N-FINDR
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data exploitation, its computational un-implementability

has prevented it from being considered in many practical

applications. This paper looks into the design rationale of

the N-FINDR and re-invents the wheel by re-deriving

the N-FINDR as a real time iterative N-FINDR (RT

IN-FINDR) which can be implemented as a real-time

processing algorithm. The need of real time processing was

also reported in [18] where the N-FINDR was included as

an endmember extraction algorithm for spectral anomaly

detection. Unfortunately, no detail of its real time imple-

mentation was documented in [18]. This paper materializes

this idea by breaking up the N-FINDR into two executable

real time processing loops, an inner loop called real time

sequential N-FINDR (RT SQ N-FINDR) which finds final

endmembers from a specific initial condition and an outer

loop, called pass which re-runs the inner loop to eliminate

the inner loop’s dependency of initial conditions. As a

result, the RT IN-FINDR can be implemented as a real

time multiple-pass SQ N-FINDR. Moreover, to further

reduce computational complexity of the RT SQ N-FINDR

in real time implementation, two new versions, referred to

as real time Circular N-FINDR (RT Circular N-FINDR)

and real time successive N-FINDR (RT SC N-FNDR) are

also developed as alternatives to replace the RT SQ

N-FINDR implemented in the IN-FINDR. There are sev-

eral advantages and benefits resulting from implementing

the N-FINDR as real time processing algorithms. Most

important and foremost is elimination of random initial

conditions commonly used in endmember extraction

algorithms such as PPI, N-FINDR, VCA that generally

result in inconsistent final extracted endmembers. Second,

there is no need of data dimensionality reduction which is

generally required by many endmember extraction algo-

rithms, e.g., PPI, N-FINDR, VCA, etc. Third, the signifi-

cant reduction of computational complexity makes real-time

N-FINDR processing algorithms attractive in real appli-

cations. Finally, the nature in algorithmic structure in

processing data sample vectors sequentially, circularly and

successively facilitates the hardware design such as field

programmable gate array (FPGA) for chip design. By

concluding this paper, one final comment on implementa-

tion of real-time N-FINDR processing algorithms is note-

worthy. Except the PPI most endmember extraction

algorithms developed in the literature need to know the

value of the p, the number of endmembers prior to its

processing. This is also true for our proposed real-time

N-FINDR processing algorithms. In order to resolve this

issue, the algorithms use the HFC/NWHFC method in [7,

8, 13] to estimate the VD and set VD = p. Since the HFC/

NWHFC requires calculation of sample correlation and

covariance matrices which must know the entire data

before the calculation can take place. In this case, the

proposed real-time N-FINDR processing algorithms onlyT
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need one more pass to accomplish the task. The sample

correlation and covariance matrices can be calculated and

updated in a causal manner by including incoming data

sample vectors in which case no storage is required to store

the entire complete data. Moreover, calculating the inverse

of these matrices can be also updated causally in real time

by the well-known Woodburry identity formula and its

FPGA implementation can be also found in [19].

Acknowledgment C.-I Chang would like to thank for support

received from the National Science Council in Taiwan under NSC

98-2811-E-005-024 and NSC 98-2221-E-005-096.

References

1. Winter, M. E.: N-finder: an algorithm for fast autonomous

spectral endmember determination in hyperspectral data. In:

Image Spectrometry V, Proceedings of SPIE, vol. 3753, pp. 266–

277 (1999)

2. Boardman, J.W.: Geometric mixture analysis of imaging spec-

trometery data. Proc. Int. Geosci. Remote Sens. Symp. 4, 2369–

2371 (1994)

3. Chaudhry, F., Wu, C., Liu, W., Chang, C.-I., Plaza, A.: Pixel

purity index-based algorithms for endmember extraction from

hyperspectral imagery, chap. 3. In: Chang, C.-I. (ed.) Recent

Advances in Hyperspectral Signal and Image Processing.

Research Signpost, Trivandrum (2006)

4. Chang, C.-I., Plaza, A.: Fast iterative algorithm for implemen-

tation of pixel purity index. IEEE Geosci. Remote Sens. Lett.

3(1), 63–67 (2006)

5. Plaza, A., Chang, C.-I.: Impact of initialization on design of

endmember extraction algorithms. IEEE Trans. Geosci. Remote

Sens. 44(11), 3397–3407 (2006)

6. Chang, C.-I., Wu, C.-C.: Random pixel purity index algorithm.

IEEE Trans. Geosci. Remote Sens. Lett. (to appear)

7. Chang, C.-I.: Hyperspectral Imaging: Techniques for Spectral

Detection and Classification. Dordrecht: Kluwer Academic/Ple-

num Publishers (2003)

8. Chang, C.-I., Du, Q.: Estimation of number of spectrally distinct

signal sources in hyperspectral imagery. IEEE Trans. Geosci.

Remote Sens. 42(3), 608–619 (2004)

9. Chang, C.-I., Wu, C., Liu, W., Ouyang, Y.C.: A growing method

for simplex-based endmember extraction algorithms. IEEE Trans.

Geosci. Remote Sens. 44(10), 2804–2819 (2006)

10. Reed, M., Simons, B. Functional Analysis, Academic Press, New

York (1972)

11. http://speclab.cr.usgs.gov/cuprite.html

12. Harsanyi, J.C., Chang, C.-I.: Hyperspectral image classification

and dimensionality reduction: an orthogonal subspace projection

approach. IEEE Trans. Geosci. Remote Sens. 32(4), 779–785

(1994)

13. Harsanyi, J.C., Farrand, W., Chang, C.-I.: Detection of subpixel

spectral signatures in hyperspectral image sequences. In: Annual

Meeting, Proceedings of American Society of Photogrammetry

and Remote Sensing, Reno, pp. 236–247 (1994)

14. Nascimento, J.M.P., Dias, J.M.: Vertex component analysis: a

fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci.

Remote Sens. 43(4), 898–910 (2005)

15. Wang, J., Chang, C.-I.: Independent component analysis-based

dimensionality reduction with applications in hyperspectral

image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–

1600 (2006)

16. Wu, C.C., Lo, C.S., Chang, C.-I.: Improved process for use of a

simplex growing algorithm for endmember extraction. IEEE

Trans. Geosci. Remote Sens. Lett. 6(3), 523–527 (2009)

17. Wang, J., Chang, C.-I.: Applications of independent component

analysis in endmember extraction and abundance quantification

for hyperspectral imagery. IEEE Trans. Geosci Remote Sens.

44(9), 2601–2616

18. Winter, E.M., Schlangen, M.J., Hill, A.B., Simi, C.G., Winter,

Winter, M.E.: Tradeoffs for real-time hyperspectral analysis. In:

Proceedings of SPIE, vol. 4725, Algorithms and Technologies for

Multispectral, Hyperspectral, and Ultraspectral Imagery VIII, pp.

366–371 (2002)

19. Wang, J., Chang, C.-I.: FPGA design for real-time implementa-

tion of hyperspectral target detection and classification algo-

rithms. In: Plaza, A., Chang, C.-I., (eds.) High-Performance

Computing in Remote Sensing, chap. 16, pp. 379–395, Boca

Raton: CRC Press (2007)

Author Biographies

Chao-Cheng Wu received the BS degree in electrical engineering

from the Tamkang University, Taipei, Taiwan in 2002 and the MS

and PhD degree in electrical engineering from the University of

Maryland, Baltimore County in 2006 and 2009. His research interests

include endmember extraction, pattern recognition, and hyperspectral

image processing.

Hsian-Min Chen received his BS, MS degrees from Huafan

University, Taipei, Taiwan in 1999, 2001 and PhD in Electrical

Engineering from National Chung Hsing University, Taichung,

Taiwan, 2007. He is currently with the Department of Radiology,

China Medical University Hospital, Taichung, Taiwan, ROC. His

research interests include digital image processing, and biomedical

image processing.

Chein-I Chang received his BS degree from Soochow University,

Taipei, Taiwan, MS degree from the Institute of Mathematics at

National Tsing Hua University, Hsinchu, Taiwan and MA degree

from the State University of New York at Stony Brook, all in

mathematics. He also received his MS, MSEE degrees from the

University of Illinois at Urbana-Champaign and PhD degree in

electrical engineering from the University of Maryland, College Park.

Dr. Chang has been with the University of Maryland, Baltimore

County (UMBC) since 1987 and is currently a professor in the

Department of Computer Science and Electrical Engineering. He was

a visiting research specialist in the Institute of Information Engineer-

ing at the National Cheng Kung University, Tainan, Taiwan, from

1994–1995. He received an NRC (National Research Council) senior

research associateship award from 2002–2003 sponsored by the US

Army Soldier and Biological Chemical Command, Edgewood

Chemical and Biological Center, Aberdeen Proving Ground, Mary-

land. Additionally, Dr. Chang was a distinguished lecturer chair at the

National Chung Hsing University sponsored by the Department of

Education in Taiwan, ROC from 2005 to 2006 and is a chair professor

in Department of Electrical Engineering, National Chung Hsing

University from 2006–2012, Taichung, Taiwan, ROC and is currently

a distinguished visiting fellow/fellow professor sponsored by National

Science Council in Taiwan from 2009–2010. He was also a keynote

speaker for the 2008 International Symposium on Spectral Sensing

Research (ISSSR) in 2008 and will be a plenary spekaer for SPIE

Optics ? Applications, Remote Sensing Symposium, 2009. He has

four patents and several pending on hyperspectral image processing.

He was the guest editor of a special issue of the Journal of High Speed

Networks on Telemedicine and Applications (April 2000) and

128 J Real-Time Image Proc (2012) 7:105–129

123

http://speclab.cr.usgs.gov/cuprite.html


co-guest editor of another special issue of the same journal on

Broadband Multimedia Sensor Networks in Healthcare Applications,

April 2007. His is also co-guest editor of a special issue on High

Performance Computing of Hyperspectral Imaging for International

Journal of High Performance Computing Applications, December

2007 and special issue on Signal Processing and System Design in

Health Care Applications for EURASIP Journal on Advanced in

Signal Processing, 2009. Dr. Chang has authored a book, Hyperspec-

tral Imaging: Techniques for Spectral Detection and Classification

published by Kluwer Academic Publishers in 2003 and edited two

books, Recent Advances in Hyperspectral Signal and Image Process-

ing, Trivandrum, Kerala: Research Signpost, Trasworld Research

Network, India, 2006 and Hyperspectral Data Exploitation: Theory

and Applications, John Wiley & Sons, 2007 and co-edited with A.

Plaza a book on High Performance Computing in Remote Sensing,

CRC Press, 2007. He is currently working on a second book,

Hyperspectral Data Processing: Signal Processing Algorithm Design

and Analysis, John Wiley & Sons, 2010 and a third book, Real Time

Hyperspectral Image Processing: Algorithm Architecture and Imple-

mentation, Springer-Verlag, 2012. Dr. Chang was an Associate Editor

in the area of hyperspectral signal processing for IEEE Transaction on

Geoscience and Remote Sensing 2001-2007 and a Fellow of IEEE

and SPIE and a member of Phi Kappa Phi and Eta Kappa Nu.

J Real-Time Image Proc (2012) 7:105–129 129

123


	Real-time N-finder processing algorithms for hyperspectral imagery
	Abstract
	Introduction
	Iterative N-FINDR
	N-FINDR
	SM N-FINDR

	Iterative N-FINDR
	Iterative N-FINDR (IN-FINDR)


	Various versions of real-time N-FINDR
	Real-time SeQuential N-FINDR (RT SQ N-FINDR)
	RT SQ N-FINDR

	Real-time circular N-FINDR
	Real-time circular N-FINDR

	Real time SuCcessive N-FINDR (RT SC N-FINDR)
	p-Pass RT SC N-FINDR


	Synthetic image experiments
	Target implantation (TI)
	Target embeddedness (TE)

	Real image experiments
	HYDICE data
	Cuprite data

	Real-time demonstration
	Analysis of comparative performance
	Conclusion
	Acknowledgment
	References


